Vertical sets in the first Heisenberg group IBS-DIMAG workshop on combinatorics and geometric measure theory

Terry Harris

University of Wisconsin-Madison

July 18, 2024

 -111

$$
\pi_{\theta}(x,t) = \left(x \cos \theta, t - \frac{1}{4}x^2 \sin 2\theta\right).
$$

Ε

$$
\pi_{\theta}(x,t) = \left(x \cos \theta, t - \frac{1}{4}x^2 \sin 2\theta\right).
$$

Let $A\subseteq \mathbb{R}^2$ have dim $_{E}$ $A=t$ (Hausdorff dimension w.r.t $\,$ Euclidean metric).

4 0 8

 $AB + AB$

 \sim \rightarrow \equiv \rightarrow D.

$$
\pi_{\theta}(x,t) = \left(x \cos \theta, t - \frac{1}{4}x^2 \sin 2\theta\right).
$$

Let $A\subseteq \mathbb{R}^2$ have dim $_{E}$ $A=t$ (Hausdorff dimension w.r.t $\,$ Euclidean metric).

Given $A\subseteq \mathbb{R}^2$, what is dim $_{E}$ $(\pi_{\theta}(A))$, for "most" $\theta\in [0,\pi)$?

目

 Ω

$$
\pi_{\theta}(x,t) = \left(x \cos \theta, t - \frac{1}{4}x^2 \sin 2\theta\right).
$$

Let $A\subseteq \mathbb{R}^2$ have dim $_{E}$ $A=t$ (Hausdorff dimension w.r.t $\,$ Euclidean metric).

- Given $A\subseteq \mathbb{R}^2$, what is dim $_{E}$ $(\pi_{\theta}(A))$, for "most" $\theta\in [0,\pi)$?
- What about dim_P ($\pi_{\theta}(A)$) if dim_P A = t with parabolic metric

$$
d_P((x,t),(x',t')) = |x-x'| + |t-t'|^{1/2}
$$

$$
\pi_{\theta}(x,t) = \left(x \cos \theta, t - \frac{1}{4}x^2 \sin 2\theta\right).
$$

Let $A\subseteq \mathbb{R}^2$ have dim $_{E}$ $A=t$ (Hausdorff dimension w.r.t $\,$ Euclidean metric).

- Given $A\subseteq \mathbb{R}^2$, what is dim $_{E}$ $(\pi_{\theta}(A))$, for "most" $\theta\in [0,\pi)$?
- What about dim_P ($\pi_{\theta}(A)$) if dim_P A = t with parabolic metric

$$
d_P((x,t),(x',t')) = |x-x'| + |t-t'|^{1/2}
$$

• If
$$
|t-t'| \ll |x-x'| \ll |t-t'|^{1/2}
$$
 then $d_P(\pi_\theta(x,t), \pi_\theta(x',t'))$ is erratic.

$$
\pi_{\theta}(x,t) = \left(x \cos \theta, t - \frac{1}{4}x^2 \sin 2\theta\right).
$$

Let $A\subseteq \mathbb{R}^2$ have dim $_{E}$ $A=t$ (Hausdorff dimension w.r.t $\,$ Euclidean metric).

- Given $A\subseteq \mathbb{R}^2$, what is dim $_{E}$ $(\pi_{\theta}(A))$, for "most" $\theta\in [0,\pi)$?
- What about dim_P ($\pi_{\theta}(A)$) if dim_P A = t with parabolic metric

$$
d_P((x,t),(x',t')) = |x-x'| + |t-t'|^{1/2}
$$

- If $|t-t'| \ll |x-x'| \ll |t-t'|^{1/2}$ then $d_P(\pi_\theta(\mathsf{x},t),\pi_\theta(\mathsf{x}',t'))$ is erratic.
- Expect that dim_P $(\pi_{\theta}(A)) \geq \dim_{P} A$ a.e. θ .

• Problem is special case of conjecture of Balogh, Durand-Cartagena, Fässler, Mattila, Tyson about vertical projections $P_{\mathbb{V}_{\theta}^{\perp}}:\mathbb{H}\to\mathbb{R}^{2},$ where $\mathbb{H}=\mathbb{R}^3$. Special case is where $P_{\mathbb{V}_{\theta}^{\perp}}$ is restricted to $\{0\}\times\mathbb{R}^2$.

- **Problem is special case of conjecture of Balogh, Durand-Cartagena,** Fässler, Mattila, Tyson about vertical projections $P_{\mathbb{V}_{\theta}^{\perp}}:\mathbb{H}\to\mathbb{R}^{2},$ where $\mathbb{H}=\mathbb{R}^3$. Special case is where $P_{\mathbb{V}_{\theta}^{\perp}}$ is restricted to $\{0\}\times\mathbb{R}^2$.
- Conjecture is (for Heisenberg metric) dim $P_{\mathbb{V}_\alpha^\perp}(A)\geq \min\{\dim A,3\}$, a.e. θ . In special case, dim = dim_P and $P_{\mathbb{V}_{\theta}^{\perp}} = \pi_{\theta}$.

 Ω

- Problem is special case of conjecture of Balogh, Durand-Cartagena, Fässler, Mattila, Tyson about vertical projections $P_{\mathbb{V}_{\theta}^{\perp}}:\mathbb{H}\to\mathbb{R}^{2},$ where $\mathbb{H}=\mathbb{R}^3$. Special case is where $P_{\mathbb{V}_{\theta}^{\perp}}$ is restricted to $\{0\}\times\mathbb{R}^2$.
- Conjecture is (for Heisenberg metric) dim $P_{\mathbb{V}_\alpha^\perp}(A)\geq \min\{\dim A,3\}$, a.e. θ . In special case, dim = dim_P and $P_{\mathbb{V}_{\theta}^{\perp}} = \pi_{\theta}$. (Cannot expect equality. Will discuss state of the art at end of the talk).

- Problem is special case of conjecture of Balogh, Durand-Cartagena, Fässler, Mattila, Tyson about vertical projections $P_{\mathbb{V}_m^{\perp}}:\mathbb{H}\to\mathbb{R}^2,$ where $\mathbb{H}=\mathbb{R}^3$. Special case is where $P_{\mathbb{V}_{\theta}^{\perp}}$ is restricted to $\{0\}\times\mathbb{R}^2$.
- Conjecture is (for Heisenberg metric) $\dim P_{\mathbb{V}_\theta^\perp}(A) \geq \min\{\dim A,3\},$ a.e. θ . In special case, dim $=$ dim $_P$ and $P_{\mathbb{V}_\theta^\perp}=\pi_\theta.$ (Cannot expect equality. Will discuss state of the art at end of the talk).
- B-DC-F-M-T considered special case where $A \subseteq \{0\} \times \mathbb{R}^2$, and showed

$$
\dim_P (\pi_\theta(A)) \geq \frac{1}{2} \left(1 + \dim A \right), \quad 1 < \dim A < 2, \quad \text{ a.e. } \theta,
$$

which improves over "classical" bound dim $\pi_{\theta}(A) \ge \min\{1, \dim A\}.$

イロト イ押 トイヨ トイヨ トー

(H. 24) (Conjecture is true for subsets of vertical planes) If $A\subseteq \mathbb{R}^2$ is *Borel, then dim_P* ($\pi_{\theta}(A)$) \geq dim_{*P*} A for a.e. θ .

IN

4日下

э

(H. 24) (Conjecture is true for subsets of vertical planes) If $A\subseteq \mathbb{R}^2$ is Borel, then dim_P $(\pi_{\theta}(A)) \geq$ dim_P A for a.e. θ .

To understand idea of the proof, recall some ideas from (the Fourier analytic version of) Kaufman's proof of (Euclidean) Marstrand projection theorem in the plane, where $\rho_\theta: \mathbb{R}^2 \to \mathbb{R}$ is $(x, y) \mapsto (x \cos \theta + y \sin \theta).$

つひひ

(H. 24) (Conjecture is true for subsets of vertical planes) If $A\subseteq \mathbb{R}^2$ is Borel, then dim_P $(\pi_{\theta}(A))$ > dim_P A for a.e. θ .

To understand idea of the proof, recall some ideas from (the Fourier analytic version of) Kaufman's proof of (Euclidean) Marstrand projection theorem in the plane, where $\rho_\theta: \mathbb{R}^2 \to \mathbb{R}$ is $(x, y) \mapsto (x \cos \theta + y \sin \theta).$

dim $A > s$ iff $\exists \mu$ on A with $I(\mu) = \int (f_{\mathsf{s}} * \mu)(\mathsf{x}) \, d\mu(\mathsf{x}) < \infty$, where $f_s(x) = |x|^{-s}.$

(H. 24) (Conjecture is true for subsets of vertical planes) If $A\subseteq \mathbb{R}^2$ is Borel, then dim_P $(\pi_{\theta}(A))$ > dim_P A for a.e. θ .

To understand idea of the proof, recall some ideas from (the Fourier analytic version of) Kaufman's proof of (Euclidean) Marstrand projection theorem in the plane, where $\rho_\theta: \mathbb{R}^2 \to \mathbb{R}$ is $(x, y) \mapsto (x \cos \theta + y \sin \theta).$

dim $A > s$ iff $\exists \mu$ on A with $I(\mu) = \int (f_{\mathsf{s}} * \mu)(\mathsf{x}) \, d\mu(\mathsf{x}) < \infty$, where $f_s(x) = |x|^{-s}.$

• If
$$
f_s(x) = |x|^{-s}
$$
 on \mathbb{R}^n then $\hat{f}_s = cf_{n-s}$.

(H. 24) (Conjecture is true for subsets of vertical planes) If $A\subseteq \mathbb{R}^2$ is Borel, then dim_P $(\pi_{\theta}(A))$ > dim_P A for a.e. θ .

To understand idea of the proof, recall some ideas from (the Fourier analytic version of) Kaufman's proof of (Euclidean) Marstrand projection theorem in the plane, where $\rho_\theta: \mathbb{R}^2 \to \mathbb{R}$ is $(x, y) \mapsto (x \cos \theta + y \sin \theta).$

- dim $A > s$ iff $\exists \mu$ on A with $I(\mu) = \int (f_{\mathsf{s}} * \mu)(\mathsf{x}) \, d\mu(\mathsf{x}) < \infty$, where $f_s(x) = |x|^{-s}.$
- If $f_s(x) = |x|^{-s}$ on \mathbb{R}^n then $\widehat{f}_s = cf_{n-s}$.
- If $I_s(\mu) < \infty$, by Plancherel and above,

$$
\int_0^{\pi} I_s(\pi_{\theta\#}\mu) d\theta =
$$

$$
c \int_0^{\pi} \int_{\mathbb{R}} r^{s-1} |\widehat{\mu}(r \cos \theta, r \sin \theta)|^2 dr d\theta = cl_s(\mu) < \infty.
$$

(H. 24) (Conjecture is true for subsets of vertical planes) If $A\subseteq \mathbb{R}^2$ is Borel, then dim_P $(\pi_{\theta}(A)) \geq$ dim_P A for a.e. θ .

To understand idea of the proof, recall some ideas from (the Fourier analytic version of) Kaufman's proof of (Euclidean) Marstrand projection theorem in the plane, where $\rho_\theta: \mathbb{R}^2 \to \mathbb{R}$ is $(x, y) \mapsto (x \cos \theta + y \sin \theta).$

- dim $A > s$ iff $\exists \mu$ on A with $I(\mu) = \int (f_{\mathsf{s}} * \mu)(\mathsf{x}) \, d\mu(\mathsf{x}) < \infty$, where $f_s(x) = |x|^{-s}.$
- If $f_s(x) = |x|^{-s}$ on \mathbb{R}^n then $\widehat{f}_s = cf_{n-s}$.
- If $I_s(\mu) < \infty$, by Plancherel and above,

$$
\int_0^{\pi} I_s(\pi_{\theta\#}\mu) d\theta =
$$

$$
c \int_0^{\pi} \int_{\mathbb{R}} r^{s-1} |\widehat{\mu}(r \cos \theta, r \sin \theta)|^2 dr d\theta = cl_s(\mu) < \infty.
$$

• Implies dim $\rho_{\theta}(A) \ge \dim A$, a.e. $\theta \in [0, \pi)$.

重

イロト イ部 トイヨ トイヨト

Replace parabolic metric $|x-x^{\prime}|+|t-t^{\prime}|^{1/2}$ with equivalent

$$
||(x, t) - (x', t')||,
$$
 $||(x, t)|| = (|x|^4 + t^2)^{1/4}.$

 $\rightarrow \equiv$ \rightarrow

э

∢ □ ▶ ∢ 何 ▶ ∢ ∃

Replace parabolic metric $|x-x^{\prime}|+|t-t^{\prime}|^{1/2}$ with equivalent

 $||(x, t) - (x', t')||, \qquad ||(x, t)|| = (|x|^4 + t^2)^{1/4}.$

Define $f_{\mathsf{s}}({x}) = \|{x}\|^{-s}$. Then for $1 < s < 3$,

 $\widehat{f}_{\mathsf{s}} \lesssim f_{3-\mathsf{s}}.$

Replace parabolic metric $|x-x^{\prime}|+|t-t^{\prime}|^{1/2}$ with equivalent

 $||(x, t) - (x', t')||, \qquad ||(x, t)|| = (|x|^4 + t^2)^{1/4}.$

Define $f_{\mathsf{s}}({x}) = \|{x}\|^{-s}$. Then for $1 < s < 3$,

$$
\widehat{f}_s \lesssim f_{3-s}.
$$

• This step relies on Basset's integral formula

$$
K_{\nu}(z)=\frac{(2z)^{\nu}\Gamma(\nu+\frac{1}{2})}{2\sqrt{\pi}}\int_{-\infty}^{\infty}e^{-iu}(z^2+u^2)^{-\nu-\frac{1}{2}}du.
$$

 $A \oplus A \times A \oplus A \times A \oplus A \times B \oplus B$

 Ω

Replace parabolic metric $|x-x^{\prime}|+|t-t^{\prime}|^{1/2}$ with equivalent

 $||(x, t) - (x', t')||, \qquad ||(x, t)|| = (|x|^4 + t^2)^{1/4}.$

Define $f_{\mathsf{s}}({x}) = \|{x}\|^{-s}$. Then for $1 < s < 3$,

$$
\widehat{f}_s \lesssim f_{3-s}.
$$

• This step relies on Basset's integral formula

$$
K_{\nu}(z)=\frac{(2z)^{\nu}\Gamma(\nu+\frac{1}{2})}{2\sqrt{\pi}}\int_{-\infty}^{\infty}e^{-iu}(z^2+u^2)^{-\nu-\frac{1}{2}} du.
$$

Apply Plancherel to $\int_0^\pi\int (f_{\mathsf{s}}*\pi_{\theta\#\mu})(\mathsf{x})\,d\pi_{\theta\#\mu}(\mathsf{x})$, reduces to

$$
\begin{split} &\iint_{[0,\pi)\backslash bad}\int_{0}^{2^{j}}\int_{0}^{2^{2j}}\n&\quad e\left(r(x-x')\cos\theta+\rho\left(t-t'-\frac{1}{4}(x^{2}-x'^{2})\sin2\theta\right)\right)\\ &\quad d\rho\,dr\,d\theta\,d\mu(x,t)\,d\mu(x',t')\ll 2^{j(3-s)}\mu(\mathbb{R}^{2})c_{s+\epsilon}(\mu)\qquad\forall j.\n\end{split}
$$

• $c_{\alpha}(\mu)$ is upper density of μ . Unlike Kaufman, cannot use $I_{\alpha}(\mu)$ for this approach.

4 0 8

4 何 ▶

э

 $\leftarrow \equiv +$

• $c_{\alpha}(\mu)$ is upper density of μ . Unlike Kaufman, cannot use $I_{\alpha}(\mu)$ for this approach.

The estimate is proved via induction on the scale 2^j .

 \leftarrow \Box

In general case, best know a.e. lower bound for dim $P_{\mathbb{V}_{\theta}^{\perp}}(A)$ is due to Fässler-Orponen, and is

$$
\dim\left(P_{\mathbb{V}_{\theta}^{\perp}}(A)\right) \geq \begin{cases} \dim A & \dim A \leq 2 \\ 2 & 2 \leq \dim A \leq 5/2 \\ 2 \dim A - 3 & 5/2 \leq \dim A \leq 3. \end{cases}
$$

4日下

- ← 冊 →

Э× э

In general case, best know a.e. lower bound for dim $P_{\mathbb{V}_{\theta}^{\perp}}(A)$ is due to Fässler-Orponen, and is

$$
\dim\left(P_{\mathbb{V}_{\theta}^{\perp}}(A)\right) \geq \begin{cases} \dim A & \dim A \leq 2 \\ 2 & 2 \leq \dim A \leq 5/2 \\ 2 \dim A - 3 & 5/2 \leq \dim A \leq 3. \end{cases}
$$

Their argument for dim $A>5/2$ uses energies (dim $A< 3)$ or L^2 norms (dim $A = 3$). An example of B-DC-F-M-T (the parabola example) shows that for $1 \leq \dim A \leq 2, \: \frac{1}{2} + \frac{\dim A}{2}$ $\frac{m}{2}$ is the best possible via the standard energy method.