Falconer-type problems for dot products

Steven Senger - Missouri State University, Springfield

July 16, 2024

 $4.171 \pm$

 $\mathbf{A} \times \mathbf{B}$

[Background](#page-1-0) [Discrete viewpoint](#page-6-0) [Fractal setting](#page-48-0)

[Results](#page-53-0)

[Distances](#page-53-0) [Dot products](#page-62-0)

È

メロトメ 伊 トメ ミトメ ミト

COLLA

オター・エー・エー

Notation

Asymptotics. Let X and Y depend on an integer parameter n.

 \triangleright We write $X \leq Y$ when there exists a constant C, independent of n, such that $X \le CY$, for all sufficiently large n, or $X = O(Y)$.

4 0 8

オター・エー・エー

Asymptotics. Let X and Y depend on an integer parameter n.

- \triangleright We write $X \leq Y$ when there exists a constant C, independent of n, such that $X \le CY$, for all sufficiently large n, or $X = O(Y)$.
- If $X \leq Y$ and $Y \leq X$, we write $X \approx Y$.

Notation

Asymptotics. Let X and Y depend on an integer parameter n.

- \triangleright We write $X \leq Y$ when there exists a constant C, independent of n, such that $X \le CY$, for all sufficiently large n, or $X = O(Y)$.
- If $X \leq Y$ and $Y \leq X$, we write $X \approx Y$.
- \triangleright We write $X \leq Y$ when for every $\epsilon > 0$, there exists a number, C_{ϵ} , independent of *n*, such that $X \leq C_{\epsilon} n^{\epsilon} Y$.

オター・エー・エー

Asymptotics. Let X and Y depend on an integer parameter n.

- \triangleright We write $X \leq Y$ when there exists a constant C, independent of n, such that $X \le CY$, for all sufficiently large n, or $X = O(Y)$.
- If $X \leq Y$ and $Y \leq X$, we write $X \approx Y$.
- ▶ We write $X \leq Y$ when for every $\epsilon > 0$, there exists a number, C_{ϵ} , independent of *n*, such that $X \leq C_{\epsilon} n^{\epsilon} Y$.
- \triangleright With the symbol \leq , we are typically burying logarithmic factors.

M 御 ▶ M 君 ▶ M 君 ▶

 $4.171 \pm$

 \leftarrow \overline{m} \rightarrow

Barat Ba

Unit distance problem for $d = 2$

 \triangleright Define $u_2(n)$ to be the maximum number of times that a distance can occur in a set of n points in the plane. Bound incidences of points and unit circles.

- \triangleright Define $u_2(n)$ to be the maximum number of times that a distance can occur in a set of n points in the plane. Bound incidences of points and unit circles.
- \triangleright Conj: (Erdős, 1946)

 $u_2(n) \leq n$.

a mills

4 A F

a Bara Ba

- \triangleright Define $u_2(n)$ to be the maximum number of times that a distance can occur in a set of n points in the plane. Bound incidences of points and unit circles.
- \triangleright Conj: (Erdős, 1946)

 $u_2(n) \leq n$.

a mills

オター・エー・エー

Remember buried log in \lesssim .

- \triangleright Define $u_2(n)$ to be the maximum number of times that a distance can occur in a set of n points in the plane. Bound incidences of points and unit circles.
- \triangleright Conj: (Erdős, 1946)

 $u_2(n) \leq n$.

- Remember buried log in \lesssim .
- ▶ Thm: (Spencer, Szemerédi, and Trotter, 1984)

$$
u_2(n)\lesssim n^{\frac{4}{3}}.
$$

∢ 伊 ▶ ∢ ヨ ▶ ∢ ヨ ▶

- \triangleright Define $u_2(n)$ to be the maximum number of times that a distance can occur in a set of n points in the plane. Bound incidences of points and unit circles.
- \triangleright Conj: (Erdős, 1946)

$$
u_2(n)\lessapprox n.
$$

- Remember buried log in \lesssim .
- ▶ Thm: (Spencer, Szemerédi, and Trotter, 1984)

$$
u_2(n)\lesssim n^{\frac{4}{3}}.
$$

4 0 8

Unit distance problem for $d = 3$

 \triangleright Define $u_3(n)$ to be the maximum number of times that a distance can occur in a set of *n* points in \mathbb{R}^3 . Bound incidences of points and unit spheres.

 \triangleright Define $u_3(n)$ to be the maximum number of times that a distance can occur in a set of *n* points in \mathbb{R}^3 . Bound incidences of points and unit spheres.

 \blacktriangleright Conj:

 $u_3(n) \lesssim n^{\frac{4}{3}}$.

a mills

手下 マチャ

 \triangleright Define $u_3(n)$ to be the maximum number of times that a distance can occur in a set of *n* points in \mathbb{R}^3 . Bound incidences of points and unit spheres.

 \blacktriangleright Conj:

$$
u_3(n)\lesssim n^{\frac{4}{3}}.
$$

Thm: (Zahl, 2017) For any $\epsilon > 0$,

$$
u_3(n)\lesssim n^{\frac{295}{197}+\epsilon}.
$$

[Discrete viewpoint](#page-6-0) [Fractal setting](#page-48-0)

Unit distance problem for $d > 4$

Figure: In dimensions 4 and up, there can be $\gtrsim n^2$ unit distances. Counterexample due to Lenz: $n/2$ points on the unit circle in the first two dimensions, the rest on a unit circle in the next two dimensions. Note that this is a "low-dimensional" set in higher dimensions.

.

[Discrete viewpoint](#page-6-0) [Fractal setting](#page-48-0)

4 0 8

Unit dot product problem

 \triangleright Given a large finite set of points, how often can a particular (typically nonzero) dot product occur? Bound incidences of points and hyperplanes.

Barat Ba

Unit dot product problem

- \triangleright Given a large finite set of points, how often can a particular (typically nonzero) dot product occur? Bound incidences of points and hyperplanes.
- \triangleright Thm: (Szemerédi and Trotter, 1983) For any set of n points and m lines in the plane, the number of pairs (p, ℓ) with $p \in \ell$ is bounded above by

$$
\lesssim (nm)^{\frac{2}{3}}+n+m.
$$

Unit dot product problem

- \triangleright Given a large finite set of points, how often can a particular (typically nonzero) dot product occur? Bound incidences of points and hyperplanes.
- \triangleright Thm: (Szemerédi and Trotter, 1983) For any set of n points and m lines in the plane, the number of pairs (p, ℓ) with $p \in \ell$ is bounded above by

$$
\lesssim (nm)^{\frac{2}{3}}+n+m.
$$

In This gives a sharp bound of $n^{\frac{4}{3}}$ for *n* points in the plane.

Unit dot product problem

- \triangleright Given a large finite set of points, how often can a particular (typically nonzero) dot product occur? Bound incidences of points and hyperplanes.
- \triangleright Thm: (Szemerédi and Trotter, 1983) For any set of n points and m lines in the plane, the number of pairs (p, ℓ) with $p \in \ell$ is bounded above by

$$
\lesssim (nm)^{\frac{2}{3}}+n+m.
$$

- In This gives a sharp bound of $n^{\frac{4}{3}}$ for *n* points in the plane.
- \triangleright Simple ("low-dimensional") construction shows the bound is n^2 in dimensions three and higher.

→ 桐 → → 手 →

[Discrete viewpoint](#page-6-0) [Fractal setting](#page-48-0)

 \leftarrow \Box

∢ 伊 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Distinct distances problem

Conj: (Erdős, 1946) Any large finite set of *n* points in the plane determine $\geq n$ distinct distances.

€

[Discrete viewpoint](#page-6-0) [Fractal setting](#page-48-0)

a mills

4 A F

a Bara Ba

Distinct distances problem

- **Conj:** (Erdős, 1946) Any large finite set of *n* points in the plane determine $\geq n$ distinct distances.
- Recall that there could be a log buried in the \gtrsim .

[Discrete viewpoint](#page-6-0) [Fractal setting](#page-48-0)

Distinct distances problem

- **Coni:** (Erdős, 1946) Any large finite set of *n* points in the plane determine $\gtrsim n$ distinct distances.
- Recall that there could be a log buried in the \gtrsim .
- \blacktriangleright This was proved by Guth and Katz in 2010.

K 御 ▶ K 唐 ▶ K 唐 ▶

4 0 8

[Discrete viewpoint](#page-6-0) [Fractal setting](#page-48-0)

 $4.17 \times$

M 御 ▶ M 君 ▶ M 君 ▶

Distinct dot products problem

$$
\Pi(P) = \{x \cdot y : x, y \in P\}.
$$

Conj: Given any large finite set P of n points in the plane, $|\Pi(P)| \gtrsim n$.

€

[Discrete viewpoint](#page-6-0) [Fractal setting](#page-48-0)

 $4.17 \times$

a Bara Ba

Distinct dot products problem

$$
\Pi(P)=\{x\cdot y:x,y\in P\}.
$$

- **Conj:** Given any large finite set P of n points in the plane, $|\Pi(P)| \gtrsim n$.
- **Thm:** Given any large finite set P of n points in the plane, $|\Pi(P)| \gtrsim n^{\frac{2}{3}}$. (Corollary of S-T)

[Discrete viewpoint](#page-6-0) [Fractal setting](#page-48-0)

Distinct dot products problem

$$
\Pi(P)=\{x\cdot y:x,y\in P\}.
$$

- **Conj:** Given any large finite set P of n points in the plane, $|\Pi(P)| \gtrsim n$.
- **Thm:** Given any large finite set P of n points in the plane, $|\Pi(P)| \gtrsim n^{\frac{2}{3}}$. (Corollary of S-T)
- ▶ Thm: (Hanson, Roche-Newton, S., 2021) Improved the exponent to $\frac{2}{3} + \frac{1}{2739}$.

∢ 伊 ▶ ∢ ヨ ▶ ∢ ヨ ▶

[Discrete viewpoint](#page-6-0) [Fractal setting](#page-48-0)

Additive combinatorics

Given $A, B \subset \mathbb{R}$,

Steven Senger - Missouri State University [Falconer dot products](#page-0-0) 10/32

目

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

[Discrete viewpoint](#page-6-0) [Fractal setting](#page-48-0)

Additive combinatorics

Given $A, B \subset \mathbb{R}$, **►** Their sumset is $A + B := \{a + b : a \in A, b \in B\}.$

重

メロト メタト メミト メミト

[Discrete viewpoint](#page-6-0) [Fractal setting](#page-48-0)

 \leftarrow \Box \rightarrow

 \leftarrow \overline{m} \rightarrow

Additive combinatorics

Given $A, B \subset \mathbb{R}$,

- **IF Their sumset is** $A + B := \{a + b : a \in A, b \in B\}.$
- **IF Their product set is** $AB := \{ab : a \in A, b \in B\}.$

重

a kata

[Discrete viewpoint](#page-6-0) [Fractal setting](#page-48-0)

Devil's dartboard sketch

Suppose for contradiction that $n^{\frac{2}{3}}$ is sharp.

重

メロト メタト メミト メミト

[Discrete viewpoint](#page-6-0) [Fractal setting](#page-48-0)

 \leftarrow \Box

Devil's dartboard sketch

Suppose for contradiction that $n^{\frac{2}{3}}$ is sharp.

Each of $n^{\frac{2}{3}}$ distinct dot products should occur $n^{\frac{4}{3}}$ times.

[Discrete viewpoint](#page-6-0) [Fractal setting](#page-48-0)

Devil's dartboard sketch

Suppose for contradiction that $n^{\frac{2}{3}}$ is sharp.

- Each of $n^{\frac{2}{3}}$ distinct dot products should occur $n^{\frac{4}{3}}$ times.
- \blacktriangleright $p \cdot p = |p|^2$, so P lives on $n^{\frac{2}{3}}$ circles centered at the origin.

Devil's dartboard sketch

Suppose for contradiction that $n^{\frac{2}{3}}$ is sharp.

- Each of $n^{\frac{2}{3}}$ distinct dot products should occur $n^{\frac{4}{3}}$ times.
- \blacktriangleright $p \cdot p = |p|^2$, so P lives on $n^{\frac{2}{3}}$ circles centered at the origin.
- The points should live on $n^{\frac{1}{3}}$ lines through the origin. (S-T)

Devil's dartboard sketch

Suppose for contradiction that $n^{\frac{2}{3}}$ is sharp.

- Each of $n^{\frac{2}{3}}$ distinct dot products should occur $n^{\frac{4}{3}}$ times.
- \blacktriangleright $p \cdot p = |p|^2$, so P lives on $n^{\frac{2}{3}}$ circles centered at the origin.
- The points should live on $n^{\frac{1}{3}}$ lines through the origin. (S-T)
- Rotate and scale so that $(1, 0)$ is in our set.

[Discrete viewpoint](#page-6-0) [Fractal setting](#page-48-0)

Devil's dartboard sketch (cont.)

È

国 重り

 \mathcal{A} . ≋ \sim

[Discrete viewpoint](#page-6-0) [Fractal setting](#page-48-0)

 $4.17 \times$

 \leftarrow \overline{m} \rightarrow

Devil's dartboard sketch (cont.)

Suppose for contradiction that $n^{\frac{2}{3}}$ is sharp.

重

 $\mathbf{A} = \mathbf{A}$. The \mathbf{A}

÷

 -0.11

Devil's dartboard sketch (cont.)

Suppose for contradiction that $n^{\frac{2}{3}}$ is sharp. ightharpoonup Call the $n^{\frac{1}{3}}$ slopes of the lines S.
Devil's dartboard sketch (cont.)

Suppose for contradiction that $n^{\frac{2}{3}}$ is sharp.

- ightharpoonup Call the $n^{\frac{1}{3}}$ slopes of the lines S.
- ▶ The x-axis points are $(a, 0)$, where $a \in A$, and $|A| \sim |AA| \sim n^{\frac{2}{3}}$.

Devil's dartboard sketch (cont.)

Suppose for contradiction that $n^{\frac{2}{3}}$ is sharp.

- ightharpoonup Call the $n^{\frac{1}{3}}$ slopes of the lines S.
- ▶ The x-axis points are $(a, 0)$, where $a \in A$, and $|A| \sim |AA| \sim n^{\frac{2}{3}}$.

Every other point has coordinates (a, sa) .

Devil's dartboard sketch (cont.)

 \blacktriangleright

Suppose for contradiction that $n^{\frac{2}{3}}$ is sharp.

- ightharpoonup Call the $n^{\frac{1}{3}}$ slopes of the lines S.
- ▶ The x-axis points are $(a, 0)$, where $a \in A$, and $|A| \sim |AA| \sim n^{\frac{2}{3}}$.
- Every other point has coordinates (a, sa) .

$$
\Pi(P) = \{(a, sa) \cdot (a', s'a')\} = \{aa' + ss'aa'\} = AA(1 + SS)
$$

[Discrete viewpoint](#page-6-0) [Fractal setting](#page-48-0)

Multiplicative structure of $(1 + SS)$

$|\Pi(P)|\sim |AA(1+SS)|, \,\, |A|\sim n^{\frac{2}{3}}, \,\, |S|\sim n^{\frac{1}{3}}$

重

メロメ メ御 メメ ミメメ ミメ

Multiplicative structure of $(1 + SS)$

 \blacktriangleright

$|\Pi(P)|\sim |AA(1+SS)|, \,\, |A|\sim n^{\frac{2}{3}}, \,\, |S|\sim n^{\frac{1}{3}}$

▶ Note, if $|BB| \sim |B|$, then B is "like" a geometric progression.

K 御 ▶ K 唐 ▶ K 唐 ▶

KILLER

Multiplicative structure of $(1 + SS)$

 \blacktriangleright

$|\Pi(P)|\sim |AA(1+SS)|, \,\, |A|\sim n^{\frac{2}{3}}, \,\, |S|\sim n^{\frac{1}{3}}$

▶ Note, if $|BB| \sim |B|$, then B is "like" a geometric progression. \blacktriangleright So if $n^{\frac{2}{3}}$ is sharp, then $(1+SS)$ behaves like a geometric progression.

Multiplicative structure of $(1 + SS)$

 \blacktriangleright

$|\Pi(P)|\sim |AA(1+SS)|, \,\, |A|\sim n^{\frac{2}{3}}, \,\, |S|\sim n^{\frac{1}{3}}$

- ▶ Note, if $|BB| \sim |B|$, then B is "like" a geometric progression.
- \blacktriangleright So if $n^{\frac{2}{3}}$ is sharp, then $(1+SS)$ behaves like a geometric progression.
- \triangleright The crux is showing that $(1 + SS)$ cannot behave like a geometric progression, using Plünnecke, Garaev-Shen, Rudnev-Stevens, and "Solymosi squeeze" for convex sets.

 $A \cap B$ is a $B \cap A$ $B \cap B$

Quick note about finite fields/rings

. . .

▶ Covert, Hart, Iosevich, Koh, Pakianathan, Rudnev, Solymosi,

重

メロト メタト メミト メミト

KILLER

M 御 ▶ M 君 ▶ M 君 ▶

Quick note about finite fields/rings

- ▶ Covert, Hart, Iosevich, Koh, Pakianathan, Rudnev, Solymosi, . . .
- \blacktriangleright Finite fields are not ordered, so we can't use convexity.

a mille

4 E 6 4 E 6

Quick note about finite fields/rings

- \triangleright Covert, Hart, Iosevich, Koh, Pakianathan, Rudnev, Solymosi, . . .
- \blacktriangleright Finite fields are not ordered, so we can't use convexity.
- \blacktriangleright L^2 methods lead to assuming Cauchy-Schwarz is sharp (a la Murphy, Petridis). . .

Quick note about finite fields/rings

- \triangleright Covert, Hart, Iosevich, Koh, Pakianathan, Rudnev, Solymosi, . . .
- \blacktriangleright Finite fields are not ordered, so we can't use convexity.
- \blacktriangleright L^2 methods lead to assuming Cauchy-Schwarz is sharp (a la Murphy, Petridis). . .
- \blacktriangleright ... meaning that each dot product has essential equal representation. . .

オター・エヌ オライ

Quick note about finite fields/rings

- \triangleright Covert, Hart, Iosevich, Koh, Pakianathan, Rudnev, Solymosi, . . .
- \blacktriangleright Finite fields are not ordered, so we can't use convexity.
- \blacktriangleright L^2 methods lead to assuming Cauchy-Schwarz is sharp (a la Murphy, Petridis). . .
- \blacktriangleright ... meaning that each dot product has essential equal representation. . .
- \blacktriangleright ... but we have no idea how to exploit this.

オター・エヌ オライ

Falconer distance problem

► Given a compact subset $E \subset \mathbb{R}^d$, define $\Delta(E)$ to be the set of distances determined by pairs of points in E , that is:

$$
\Delta(E)=\{|x-y|:x,y\in E\}.
$$

 $4.171 \pm$

Falconer distance problem

► Given a compact subset $E \subset \mathbb{R}^d$, define $\Delta(E)$ to be the set of distances determined by pairs of points in E , that is:

$$
\Delta(E)=\{|x-y|:x,y\in E\}.
$$

▶ Conjecture: If $s = \dim_{\mathcal{H}} E > \frac{d}{2}$ $\frac{d}{2}$, then the Lebesgue measure of $\Delta(E)$ is positive.

Falconer distance problem

► Given a compact subset $E \subset \mathbb{R}^d$, define $\Delta(E)$ to be the set of distances determined by pairs of points in E , that is:

$$
\Delta(E)=\{|x-y|:x,y\in E\}.
$$

- ▶ Conjecture: If $s = \dim_{\mathcal{H}} E > \frac{d}{2}$ $\frac{d}{2}$, then the Lebesgue measure of $\Delta(E)$ is positive.
- Falconer proved $s > \frac{d+1}{2}$ $\frac{+1}{2}$ initially. In the plane, the current record is $s > \frac{5}{4}$ $\frac{5}{4}$, due to Guth, losevich, Ou, and Wang. Higher dimensional results in various papers by these authors and Du, Ren, Wilson, and Zhang.

[Discrete viewpoint](#page-6-0) [Fractal setting](#page-48-0)

Falconer's estimate

 \blacktriangleright Define the **Riesz potential** of a measure μ to be:

$$
I_{\alpha}(\mu) = \int \int |x-y|^{-\alpha} d\mu(x) d\mu(y).
$$

重

メロト メタト メミト メミト

Falconer's estimate

 \blacktriangleright Define the **Riesz potential** of a measure μ to be:

$$
I_{\alpha}(\mu)=\int\int |x-y|^{-\alpha}d\mu(x)d\mu(y).
$$

 \blacktriangleright In the paper introducing his eponymous distance problem (How large of a Hausdorff dimension guarantees a positive measure of distinct distances?), Falconer proved that if dim $_{\mathcal{H}}$ supp $(\mu)=s>\frac{d+1}{2}$ $\frac{+1}{2}$, then for any $\epsilon > 0$,

$$
I_{\mathsf{s}}(\mu) < \infty \Rightarrow (\mu \times \mu)\{(x,y) : 1 \leq |x-y| \leq 1+\epsilon\} \lesssim \epsilon.
$$

Theorem (Mattila, 1987)

When $d = 2$, there exists a measure μ that will fail the analog of Falconer's estimate for $s < \frac{d+1}{2}$ $\frac{+1}{2}$.

\n- For
$$
s < \frac{d+1}{2}
$$
,
\n- $I_s(\mu) < \infty \nRightarrow (\mu \times \mu) \{(x, y) : 1 \leq |x - y| \leq 1 + \epsilon\} \lesssim \epsilon$.
\n

KILLER

4.AD 6.

4 E 6 4 E 6

重

Theorem (Mattila, 1987)

When $d = 2$, there exists a measure μ that will fail the analog of Falconer's estimate for $s < \frac{d+1}{2}$ $\frac{+1}{2}$.

• For
$$
s < \frac{d+1}{2}
$$
,
\n
$$
I_s(\mu) < \infty \nRightarrow (\mu \times \mu) \{(x, y) : 1 \le |x - y| \le 1 + \epsilon\} \lesssim \epsilon.
$$

 \triangleright Cartesian product of a Cantor set and an interval.

a mille

Theorem (Mattila, 1987)

When $d = 2$, there exists a measure μ that will fail the analog of Falconer's estimate for $s < \frac{d+1}{2}$ $\frac{+1}{2}$.

• For
$$
s < \frac{d+1}{2}
$$
,
\n
$$
I_s(\mu) < \infty \nRightarrow (\mu \times \mu) \{(x, y) : 1 \le |x - y| \le 1 + \epsilon\} \lesssim \epsilon.
$$

 \triangleright Cartesian product of a Cantor set and an interval.

Extended to $d = 3$ by losevich, and S. in 2010.

Theorem (Mattila, 1987)

When $d = 2$, there exists a measure μ that will fail the analog of Falconer's estimate for $s < \frac{d+1}{2}$ $\frac{+1}{2}$.

\n- For
$$
s < \frac{d+1}{2}
$$
,
\n- $I_s(\mu) < \infty \nRightarrow (\mu \times \mu)\{(x, y) : 1 \leq |x - y| \leq 1 + \epsilon\} \lesssim \epsilon$.
\n

- \triangleright Cartesian product of a Cantor set and an interval.
- Extended to $d = 3$ by losevich, and S. in 2010.
- \triangleright Unclear how to extend to higher dimensions.

[Distances](#page-53-0) [Dot products](#page-62-0)

Mattila-type construction for $d = 2, 3$

Figure: In dimension 2, we have $[0,1] \times C_{\alpha}$. In dimension 3, we have $\mathcal{C}_{\alpha} \times \mathcal{C}_{\alpha} \times \mathcal{C}_{\beta}$.

 \leftarrow \Box

4.AD 6.

∍

 \rightarrow \equiv \rightarrow

重

[Distances](#page-53-0) [Dot products](#page-62-0)

Non-Euclidean distance

Theorem (Iosevich, S., 2010–2016)

There exists a centrally symmetric convex body B with smooth boundary and non vanishing curvature and a measure μ such that distances measured by dilates of B will fail the analog of Falconer's estimate for $s < \frac{d+1}{2}$ $rac{+1}{2}$.

For $s < \frac{d+1}{2}$ $\frac{+1}{2}$,

 $I_{\mathsf{s}}(\mu) < \infty \nRightarrow (\mu \times \mu) \{ (x, y) : 1 \leq |x - y|_B \leq 1 + \epsilon \} \leq \epsilon.$

オター・エヌ オライ

Non-Euclidean distance

Theorem (Iosevich, S., 2010–2016)

There exists a centrally symmetric convex body B with smooth boundary and non vanishing curvature and a measure μ such that distances measured by dilates of B will fail the analog of Falconer's estimate for $s < \frac{d+1}{2}$ $rac{+1}{2}$.

$$
\blacktriangleright \ \ \text{For} \ \, s < \tfrac{d+1}{2},
$$

 $I_{\mathsf{s}}(\mu) < \infty \nRightarrow (\mu \times \mu) \{ (x, y) : 1 \leq |x - y|_B \leq 1 + \epsilon \} \leq \epsilon.$

 \triangleright Based on a parabolic construction due to Valtr in 2005.

オター・エヌ オライ

Non-Euclidean distance

Theorem (Iosevich, S., 2010–2016)

There exists a centrally symmetric convex body B with smooth boundary and non vanishing curvature and a measure μ such that distances measured by dilates of B will fail the analog of Falconer's estimate for $s < \frac{d+1}{2}$ $rac{+1}{2}$.

For $s < \frac{d+1}{2}$ $\frac{+1}{2}$,

 $I_{\mathsf{s}}(\mu) < \infty \nRightarrow (\mu \times \mu) \{ (x, y) : 1 \leq |x - y|_B \leq 1 + \epsilon \} \leq \epsilon.$

- \triangleright Based on a parabolic construction due to Valtr in 2005.
- \triangleright Discrete-fractal conversion mechanism Hofmann, Iosevich, Jorati, Laba, Uriarte-Tuero.

メロメ メ御 メメ ヨメ メヨメー

[Distances](#page-53-0) [Dot products](#page-62-0)

Valtr's construction

Figure: For stage *n*, set $m = n^{\frac{1}{3}}$. The points have coordinates $(\frac{i}{m}, \frac{j}{m^2})$, for $i=1\ldots m$ and $j=1\ldots m^2.$ The "circles" are parabolic arcs glued together. The limit of this construction will be the support of the measure μ .

4 0 8

Falconer-type dot product problem

► Given a compact subset $E \subset \mathbb{R}^d$, recall $\Pi(E)$ is the set of dot products determined by pairs of points in E , that is:

$$
\Pi(E)=\{x\cdot y:x,y\in E\}.
$$

 $4.17 \times$

Falconer-type dot product problem

► Given a compact subset $E \subset \mathbb{R}^d$, recall $\Pi(E)$ is the set of dot products determined by pairs of points in E , that is:

$$
\Pi(E)=\{x\cdot y:x,y\in E\}.
$$

▶ Conjecture: If $s = \dim_{\mathcal{H}} E > \frac{d}{2}$ $\frac{d}{2}$, then the Lebesgue measure of $\Pi(E)$ is positive.

Falconer-type dot product problem

► Given a compact subset $E \subset \mathbb{R}^d$, recall $\Pi(E)$ is the set of dot products determined by pairs of points in E , that is:

$$
\Pi(E)=\{x\cdot y:x,y\in E\}.
$$

- ▶ Conjecture: If $s = \dim_{\mathcal{H}} E > \frac{d}{2}$ $\frac{d}{2}$, then the Lebesgue measure of $\Pi(E)$ is positive.
- Partial results $(s > \frac{d+1}{2})$ $\frac{+1}{2}$): Eswarathasan, Iosevich, Palsson, Taylor, Uriarte-Tuero, etc., avoiding fractal devil's dartboard.

Dot products in two dimensions

Theorem (Eswarathasan, Iosevich, Taylor, 2010)

For any $s < \frac{3}{2}$ $\frac{3}{2}$, there exists a measure μ on $[0,1]^2$ with $\dim_{\mathcal{H}} supp(\mu) = s$, that will fail the analog of Falconer's estimate for dot products.

• In
$$
[0,1]^2
$$
, for $s < \frac{3}{2}$,

 $I_{\mathsf{s}}(\mu) < \infty \nRightarrow (\mu \times \mu)\{(x, y) : 1 \leq x \cdot y \leq 1 + \epsilon\} \leq \epsilon.$

Dot products in two dimensions

Theorem (Eswarathasan, Iosevich, Taylor, 2010)

For any $s < \frac{3}{2}$ $\frac{3}{2}$, there exists a measure μ on $[0,1]^2$ with $\dim_{\mathcal{H}} supp(\mu) = s$, that will fail the analog of Falconer's estimate for dot products.

• In
$$
[0,1]^2
$$
, for $s < \frac{3}{2}$,

 $I_{\mathsf{s}}(\mu) < \infty \nRightarrow (\mu \times \mu)\{(x, y) : 1 \leq x \cdot y \leq 1 + \epsilon\} \leq \epsilon.$

$$
\blacktriangleright
$$
 Similar to Mattila's construction.

Dot products in higher dimensions

Theorem (Iosevich, S., 2020)

For any $s < \frac{d+1}{2}$ $\frac{+1}{2}$, there exists a measure μ on $[0,2]^d$ with $\dim_{\mathcal{H}} supp(\mu) = s$, that will fail the analog of Falconer's estimate for dot products.

$$
\blacktriangleright \ \ln\ [0,1]^d, \text{ for } s < \tfrac{d+1}{2},
$$

 $I_{\epsilon}(\mu) < \infty \nRightarrow (\mu \times \mu) \{ (x, y) : 1 \leq x \cdot y \leq 1 + \epsilon \} \leq \epsilon.$

Dot products in higher dimensions

Theorem (Iosevich, S., 2020)

For any $s < \frac{d+1}{2}$ $\frac{+1}{2}$, there exists a measure μ on $[0,2]^d$ with $\dim_{\mathcal{H}} supp(\mu) = s$, that will fail the analog of Falconer's estimate for dot products.

$$
\blacktriangleright \ \ln\ [0,1]^d, \text{ for } s < \tfrac{d+1}{2},
$$

 $I_{\epsilon}(\mu) < \infty \nRightarrow (\mu \times \mu) \{ (x, y) : 1 \leq x \cdot y \leq 1 + \epsilon \} \leq \epsilon.$

 \triangleright Based on the Valtr construction, but with more arithmetic complexity, and tougher energy estimates.

[Distances](#page-53-0) [Dot products](#page-62-0)

Dot product construction

Figure: Similar to the Valtr construction, but now we need to intersect points with lines. Here we have a family of m red lines, of m slopes. These red lines are the set of points that have dot product one with the red points.

a mille

[Distances](#page-53-0) [Dot products](#page-62-0)

Pinned dot products

$$
\Pi_x(E)=\{x\cdot y:y\in E\}.
$$

Theorem (Iosevich, Taylor, Uriarte-Tuero, 2016) For any $E \subseteq \mathbb{R}^d$, with dim $E = s > \frac{d+1}{2}$ $\frac{+1}{2}$, the Lebesgue measure of $\Pi_{x}(E)$ is positive.

 $4.17 \times$

オター・エヌ オライ

重

[Distances](#page-53-0) [Dot products](#page-62-0)

Edge weighted trees

Figure: Trees are acyclic connected graphs. These two trees have the same shape, but different weights.

 \leftarrow \Box

 \leftarrow \leftarrow \leftarrow

 \leftarrow \equiv

€
[Distances](#page-53-0) [Dot products](#page-62-0)

Continuous trees - distances

$$
\Delta_x(E)=\{|x-y|: y\in E\}.
$$

Theorem (Ou and Taylor, 2020)

Let $E\subseteq R^2$ be a compact set satisfying $\dim_{\mathcal{H}}(E)>\frac{5}{4}$ $\frac{5}{4}$, then there exists a point $x \in E$ such that for all integers $k \ge 2$, we have that any k-tree T of any shape pinned at any vertex has a positive k-dimensional Lebesgue measure of distinct edge weights determined by distances.

Corollary (Bright, Marshall, S., 2023+)

Let $E\subseteq R^2$ be a compact set satisfying $\dim_{\mathcal{H}}(E)>\frac{3}{2}$ $\frac{3}{2}$, then there exists a point $x \in E$ such that for all integers $k \ge 2$, we have that any k-tree T of any shape pinned at any vertex has a positive k-dimensional Lebesgue measure of distinct edge weights determined by dot products.

Corollary (Bright, Marshall, S., 2023+)

Let $E\subseteq R^2$ be a compact set satisfying $\dim_{\mathcal{H}}(E)>\frac{3}{2}$ $\frac{3}{2}$, then there exists a point $x \in E$ such that for all integers $k \ge 2$, we have that any k-tree T of any shape pinned at any vertex has a positive k-dimensional Lebesgue measure of distinct edge weights determined by dot products.

▶ Uses Orponen-Shmerkin-Wang.

Corollary (Bright, Marshall, S., 2023+)

Let $E\subseteq R^2$ be a compact set satisfying $\dim_{\mathcal{H}}(E)>\frac{3}{2}$ $\frac{3}{2}$, then there exists a point $x \in E$ such that for all integers $k \ge 2$, we have that any k-tree T of any shape pinned at any vertex has a positive k-dimensional Lebesgue measure of distinct edge weights determined by dot products.

- ▶ Uses Orponen-Shmerkin-Wang.
- \triangleright Nadjimzadah proved an unpinned version in 2022.

Corollary (Bright, Marshall, S., 2023+)

Let $E\subseteq R^2$ be a compact set satisfying $\dim_{\mathcal{H}}(E)>\frac{3}{2}$ $\frac{3}{2}$, then there exists a point $x \in E$ such that for all integers $k \ge 2$, we have that any k-tree T of any shape pinned at any vertex has a positive k-dimensional Lebesgue measure of distinct edge weights determined by dot products.

- ▶ Uses Orponen-Shmerkin-Wang.
- \triangleright Nadjimzadah proved an unpinned version in 2022.
- \triangleright Simple proof for Ahlfors regular by modifying Moser (1952).

イロメ イタメ オラメイラメ

Corollary (Bright, Marshall, S., 2023+)

For any $s < \frac{d+1}{2}$ $\frac{+1}{2}$, and tree T on k edges, there exists a measure μ on $[0, 2]$ ^d with dim_H supp(μ) = s, and a set of edge weights \vec{w} so that the analog of Falconer's estimate for T with dot product edge weights will fail.

$$
\blacktriangleright \ \ \text{In} \ [0,1]^d, \ \text{for} \ \ s < \tfrac{d+1}{2}, \ I_s(\mu) < \infty \ \nRightarrow
$$

$$
\mu^{k+1}\{(x_j,y_j): w_j \leq x_j \cdot y_j \leq w_j + \epsilon, j = 1,\ldots,k\} \lesssim \epsilon^k.
$$

Corollary (Bright, Marshall, S., 2023+)

For any $s < \frac{d+1}{2}$, and tree T on k edges, there exists a measure μ on $[0, 2]^d$ with dim_H supp(μ) = s, and a set of edge weights \vec{w} so that the analog of Falconer's estimate for T with dot product edge weights will fail.

$$
\blacktriangleright \ \ln\ [0,1]^d, \text{ for } s < \tfrac{d+1}{2}, l_s(\mu) < \infty \neq
$$

 $\mu^{k+1}\{(\mathrm{x}_j,\mathrm{y}_j): \mathrm{w}_j\leq \mathrm{x}_j\cdot \mathrm{y}_j\leq \mathrm{w}_j+\epsilon, j=1,\ldots,k\}\lesssim \epsilon^k.$

 \triangleright Uses the construction in losevich and S., (2020).

 \sqrt{m} > \sqrt{m} > \sqrt{m} >

Corollary (Bright, Marshall, S., 2023+)

For any $s < 1$, and a **path** T on k edges, there exists a measure μ on $[0, 2]^2$ with dim_H supp(μ) = s, and a set of edge weights \vec{w} so that the analog of Falconer's estimate for T with dot product edge weights will fail.

► In [0, 1]², for
$$
s < 1
$$
, $I_s(\mu) < \infty \ne$
\n
$$
\mu^{k+1}\{(x_j, y_j) : w_j \le x_j \cdot y_j \le w_j + \epsilon, j = 1, ..., k\} \lesssim \epsilon^k.
$$

④ → ④ → → ミ → → ミ →

Corollary (Bright, Marshall, S., 2023+)

For any $s < 1$, and a **path** T on k edges, there exists a measure μ on $[0, 2]^2$ with dim_H supp(μ) = s, and a set of edge weights \vec{w} so that the analog of Falconer's estimate for T with dot product edge weights will fail.

$$
\blacktriangleright \ \ \text{In} \ [0,1]^2, \ \text{for} \ s < 1, I_{\mathsf{s}}(\mu) < \infty \ \nRightarrow
$$

 $\mu^{k+1}\{(\mathsf{x}_j,\mathsf{y}_j) : \mathsf{w}_j \leq \mathsf{x}_j \cdot \mathsf{y}_j \leq \mathsf{w}_j + \epsilon, j = 1,\ldots,k \} \lesssim \epsilon^k.$

 \triangleright Uses the construction in Kilmer, Marshall, and S.

∢ 伊 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Corollary (Bright, Marshall, S., 2023+)

For any $s < 1$, and a **path** T on k edges, there exists a measure μ on $[0, 2]^2$ with dim_H supp(μ) = s, and a set of edge weights \vec{w} so that the analog of Falconer's estimate for T with dot product edge weights will fail.

$$
\blacktriangleright \ \ \text{In} \ [0,1]^2, \ \text{for} \ s < 1, I_{\mathsf{s}}(\mu) < \infty \ \nRightarrow
$$

 $\mu^{k+1}\{(\mathsf{x}_j,\mathsf{y}_j) : \mathsf{w}_j \leq \mathsf{x}_j \cdot \mathsf{y}_j \leq \mathsf{w}_j + \epsilon, j = 1,\ldots,k \} \lesssim \epsilon^k.$

- \triangleright Uses the construction in Kilmer, Marshall, and S.
- \triangleright Can be slightly more general than paths.

メロトメ 倒 トメ ミトメ ミトー

Corollary (Bright, Marshall, S., 2023+)

For any $s < 1$, and a **path** T on k edges, there exists a measure μ on $[0, 2]^2$ with dim_H supp(μ) = s, and a set of edge weights \vec{w} so that the analog of Falconer's estimate for T with dot product edge weights will fail.

$$
\blacktriangleright \ \ \text{In} \ [0,1]^2, \ \text{for} \ s < 1, I_s(\mu) < \infty \ \nRightarrow
$$

 $\mu^{k+1}\{(\mathsf{x}_j,\mathsf{y}_j) : \mathsf{w}_j \leq \mathsf{x}_j \cdot \mathsf{y}_j \leq \mathsf{w}_j + \epsilon, j = 1,\ldots,k \} \lesssim \epsilon^k.$

- \triangleright Uses the construction in Kilmer, Marshall, and S.
- \triangleright Can be slightly more general than paths.
- \blacktriangleright Related to work by Barker and S., later improved by Lund.

メロメ メ御 メメ ヨメ メヨメー

[Background](#page-1-0) **[Results](#page-53-0) [Distances](#page-53-0)** [Dot products](#page-62-0)

THANKS! ˆ–ˆ

È

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶