Falconer-type problems for dot products

Steven Senger - Missouri State University, Springfield

July 16, 2024

向下 イヨト イヨト

Background Discrete viewpoint Fractal setting

Results

Distances Dot products

æ

・ロト ・回ト ・ヨト ・ヨト

Notation

Asymptotics. Let X and Y depend on an integer parameter n.

We write X ≤ Y when there exists a constant C, independent of n, such that X ≤ CY, for all sufficiently large n, or X = O(Y).

- 4 回 ト 4 三 ト

Notation

Asymptotics. Let X and Y depend on an integer parameter n.

- We write X ≤ Y when there exists a constant C, independent of n, such that X ≤ CY, for all sufficiently large n, or X = O(Y).
- If $X \lesssim Y$ and $Y \lesssim X$, we write $X \approx Y$.

Asymptotics. Let X and Y depend on an integer parameter n.

- We write X ≤ Y when there exists a constant C, independent of n, such that X ≤ CY, for all sufficiently large n, or X = O(Y).
- If $X \lesssim Y$ and $Y \lesssim X$, we write $X \approx Y$.
- We write $X \leq Y$ when for every $\epsilon > 0$, there exists a number, C_{ϵ} , independent of *n*, such that $X \leq C_{\epsilon} n^{\epsilon} Y$.

Asymptotics. Let X and Y depend on an integer parameter n.

- We write X ≤ Y when there exists a constant C, independent of n, such that X ≤ CY, for all sufficiently large n, or X = O(Y).
- If $X \lesssim Y$ and $Y \lesssim X$, we write $X \approx Y$.
- We write $X \leq Y$ when for every $\epsilon > 0$, there exists a number, C_{ϵ} , independent of *n*, such that $X \leq C_{\epsilon} n^{\epsilon} Y$.
- ▶ With the symbol ≤, we are typically burying logarithmic factors.

イロト イヨト イヨト イヨト

Define u₂(n) to be the maximum number of times that a distance can occur in a set of n points in the plane. Bound incidences of points and unit circles.

- Define u₂(n) to be the maximum number of times that a distance can occur in a set of n points in the plane. Bound incidences of points and unit circles.
- Conj: (Erdős, 1946)

 $u_2(n) \lessapprox n.$

・ 同 ト ・ 三 ト ・ 三 ト

- Define u₂(n) to be the maximum number of times that a distance can occur in a set of n points in the plane. Bound incidences of points and unit circles.
- Conj: (Erdős, 1946)

 $u_2(n) \lessapprox n.$

• Remember buried log in \leq .

• (1) • (

- Define u₂(n) to be the maximum number of times that a distance can occur in a set of n points in the plane. Bound incidences of points and unit circles.
- Conj: (Erdős, 1946)

$$u_2(n) \lessapprox n.$$

- Remember buried log in \leq .
- **Thm:** (Spencer, Szemerédi, and Trotter, 1984)

$$u_2(n) \lesssim n^{rac{4}{3}}.$$

• (1) • (

- Define u₂(n) to be the maximum number of times that a distance can occur in a set of n points in the plane. Bound incidences of points and unit circles.
- Conj: (Erdős, 1946)

$$u_2(n) \lessapprox n.$$

- Remember buried log in \leq .
- **Thm:** (Spencer, Szemerédi, and Trotter, 1984)

$$u_2(n) \lesssim n^{rac{4}{3}}.$$

▶ Define u₃(n) to be the maximum number of times that a distance can occur in a set of n points in ℝ³. Bound incidences of points and unit spheres.

< 17 > <

▶ Define u₃(n) to be the maximum number of times that a distance can occur in a set of n points in ℝ³. Bound incidences of points and unit spheres.

Conj:

$$u_3(n) \lesssim n^{\frac{4}{3}}.$$

A (1) > A (2) > A (2) >

▶ Define u₃(n) to be the maximum number of times that a distance can occur in a set of n points in ℝ³. Bound incidences of points and unit spheres.

Conj:

$$u_3(n) \lesssim n^{rac{4}{3}}.$$

• Thm: (Zahl, 2017) For any $\epsilon > 0$,

$$u_3(n) \lesssim n^{rac{295}{197}+\epsilon}.$$

Discrete viewpoint Fractal setting

Unit distance problem for $d \ge 4$

Figure: In dimensions 4 and up, there can be $\geq n^2$ unit distances. Counterexample due to Lenz: n/2 points on the unit circle in the first two dimensions, the rest on a unit circle in the next two dimensions. Note that this is a "low-dimensional" set in higher dimensions.

イロト イポト イヨト イヨト

Discrete viewpoint Fractal setting

Unit dot product problem

Given a large finite set of points, how often can a particular (typically nonzero) dot product occur? Bound incidences of points and hyperplanes.

< (T) >

글 에 에 글 어

Unit dot product problem

- Given a large finite set of points, how often can a particular (typically nonzero) dot product occur? Bound incidences of points and hyperplanes.
- ► Thm: (Szemerédi and Trotter, 1983) For any set of n points and m lines in the plane, the number of pairs (p, l) with p ∈ l is bounded above by

$$\lesssim (nm)^{\frac{2}{3}} + n + m.$$

Unit dot product problem

- Given a large finite set of points, how often can a particular (typically nonzero) dot product occur? Bound incidences of points and hyperplanes.
- Thm: (Szemerédi and Trotter, 1983) For any set of n points and m lines in the plane, the number of pairs (p, ℓ) with p ∈ ℓ is bounded above by

$$\lesssim (nm)^{\frac{2}{3}} + n + m.$$

• This gives a sharp bound of $n^{\frac{4}{3}}$ for *n* points in the plane.

Unit dot product problem

- Given a large finite set of points, how often can a particular (typically nonzero) dot product occur? Bound incidences of points and hyperplanes.
- Thm: (Szemerédi and Trotter, 1983) For any set of n points and m lines in the plane, the number of pairs (p, ℓ) with p ∈ ℓ is bounded above by

$$\lesssim (nm)^{\frac{2}{3}} + n + m.$$

- This gives a sharp bound of $n^{\frac{4}{3}}$ for *n* points in the plane.
- Simple ("low-dimensional") construction shows the bound is n² in dimensions three and higher.

Discrete viewpoint Fractal setting

Distinct distances problem

▶ **Conj:** (Erdős, 1946) Any large finite set of *n* points in the plane determine $\geq n$ distinct distances.

- 4 回 ト 4 三 ト

Discrete viewpoint Fractal setting

Distinct distances problem

- Conj: (Erdős, 1946) Any large finite set of *n* points in the plane determine ≥ *n* distinct distances.
- Recall that there could be a log buried in the \gtrsim .

・ 同 ト ・ 三 ト ・ 三 ト

Discrete viewpoint Fractal setting

Distinct distances problem

- ▶ **Conj:** (Erdős, 1946) Any large finite set of *n* points in the plane determine $\geq_i n$ distinct distances.
- Recall that there could be a log buried in the \gtrsim .
- This was proved by Guth and Katz in 2010.

・ 同 ト ・ 三 ト ・ 三 ト

Discrete viewpoint Fractal setting

Distinct dot products problem

$$\Pi(P) = \{x \cdot y : x, y \in P\}.$$

► **Conj:** Given any large finite set *P* of *n* points in the plane, $|\Pi(P)| \gtrsim n$.

臣

Discrete viewpoint Fractal setting

Distinct dot products problem

$$\Pi(P) = \{x \cdot y : x, y \in P\}.$$

- ► **Conj:** Given any large finite set *P* of *n* points in the plane, $|\Pi(P)| \gtrsim n$.
- ► Thm: Given any large finite set *P* of *n* points in the plane, $|\Pi(P)| \gtrsim n^{\frac{2}{3}}$. (Corollary of S-T)

A (1) > A (2) > A (2) >

Discrete viewpoint Fractal setting

Distinct dot products problem

$$\Pi(P) = \{x \cdot y : x, y \in P\}.$$

- ► **Conj:** Given any large finite set *P* of *n* points in the plane, $|\Pi(P)| \gtrsim n$.
- ► Thm: Given any large finite set *P* of *n* points in the plane, $|\Pi(P)| \gtrsim n^{\frac{2}{3}}$. (Corollary of S-T)
- Thm:(Hanson, Roche-Newton, S., 2021) Improved the exponent to $\frac{2}{3} + \frac{1}{2739}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Discrete viewpoint Fractal setting

Additive combinatorics

Given $A, B \subset \mathbb{R}$,

Steven Senger - Missouri State University Falconer dot products

Ð,

ヘロト 人間 とくほど 人間とう

Discrete viewpoint Fractal setting

Additive combinatorics

Given $A, B \subset \mathbb{R}$, Their sumset is $A + B := \{a + b : a \in A, b \in B\}$.

æ

Discrete viewpoint Fractal setting

Additive combinatorics

Given $A, B \subset \mathbb{R}$,

- Their sumset is $A + B := \{a + b : a \in A, b \in B\}.$
- Their product set is $AB := \{ab : a \in A, b \in B\}$.

臣

.

Discrete viewpoint Fractal setting

Devil's dartboard sketch

Suppose for contradiction that $n^{\frac{2}{3}}$ is sharp.

э

<回と < 回と < 回と

Discrete viewpoint Fractal setting

Devil's dartboard sketch

Suppose for contradiction that $n^{\frac{2}{3}}$ is sharp.

• Each of $n^{\frac{2}{3}}$ distinct dot products should occur $n^{\frac{4}{3}}$ times.

Discrete viewpoint Fractal setting

Devil's dartboard sketch

Suppose for contradiction that $n^{\frac{2}{3}}$ is sharp.

- Each of $n^{\frac{2}{3}}$ distinct dot products should occur $n^{\frac{4}{3}}$ times.
- $p \cdot p = |p|^2$, so P lives on $n^{\frac{2}{3}}$ circles centered at the origin.

Discrete viewpoint Fractal setting

Devil's dartboard sketch

Suppose for contradiction that $n^{\frac{2}{3}}$ is sharp.

- Each of $n^{\frac{2}{3}}$ distinct dot products should occur $n^{\frac{4}{3}}$ times.
- $p \cdot p = |p|^2$, so P lives on $n^{\frac{2}{3}}$ circles centered at the origin.
- The points should live on $n^{\frac{1}{3}}$ lines through the origin. (S-T)

Discrete viewpoint Fractal setting

Devil's dartboard sketch

Suppose for contradiction that $n^{\frac{2}{3}}$ is sharp.

- Each of $n^{\frac{2}{3}}$ distinct dot products should occur $n^{\frac{4}{3}}$ times.
- $p \cdot p = |p|^2$, so P lives on $n^{\frac{2}{3}}$ circles centered at the origin.
- The points should live on $n^{\frac{1}{3}}$ lines through the origin. (S-T)
- ▶ Rotate and scale so that (1,0) is in our set.

Discrete viewpoint Fractal setting

Devil's dartboard sketch (cont.)

æ

→ < Ξ →</p>

Devil's dartboard sketch (cont.)

Suppose for contradiction that $n^{\frac{2}{3}}$ is sharp.

臣

B 1 4 B 1

< 17 > <

Devil's dartboard sketch (cont.)

Suppose for contradiction that $n^{\frac{2}{3}}$ is sharp.

• Call the $n^{\frac{1}{3}}$ slopes of the lines *S*.
Devil's dartboard sketch (cont.)

Suppose for contradiction that $n^{\frac{2}{3}}$ is sharp.

- Call the $n^{\frac{1}{3}}$ slopes of the lines S.
- The x-axis points are (a, 0), where $a \in A$, and $|A| \sim |AA| \sim n^{\frac{2}{3}}$.

Devil's dartboard sketch (cont.)

Suppose for contradiction that $n^{\frac{2}{3}}$ is sharp.

- Call the $n^{\frac{1}{3}}$ slopes of the lines S.
- The x-axis points are (a, 0), where $a \in A$, and $|A| \sim |AA| \sim n^{\frac{2}{3}}$.
- Every other point has coordinates (*a*, *sa*).

Devil's dartboard sketch (cont.)

Suppose for contradiction that $n^{\frac{2}{3}}$ is sharp.

- Call the $n^{\frac{1}{3}}$ slopes of the lines S.
- The x-axis points are (a, 0), where $a \in A$, and $|A| \sim |AA| \sim n^{\frac{2}{3}}$.
- Every other point has coordinates (*a*, *sa*).

$$\Pi(P) = \{(a, sa) \cdot (a', s'a')\} = \{aa' + ss'aa'\} = AA(1 + SS)$$

Discrete viewpoint Fractal setting

Multiplicative structure of (1 + SS)

$|\Pi(P)| \sim |AA(1+SS)|, \ |A| \sim n^{\frac{2}{3}}, \ |S| \sim n^{\frac{1}{3}}$

臣

イロト イヨト イヨト イヨト

Multiplicative structure of (1 + SS)

$|\Pi(P)| \sim |AA(1+SS)|, \ |A| \sim n^{rac{2}{3}}, \ |S| \sim n^{rac{1}{3}}$

Note, if $|BB| \sim |B|$, then B is "like" a geometric progression.

臣

(4回) (4回) (4回)

Multiplicative structure of (1 + SS)

- $|\Pi(P)| \sim |AA(1+SS)|, |A| \sim n^{\frac{2}{3}}, |S| \sim n^{\frac{1}{3}}$
- Note, if |BB| ~ |B|, then B is "like" a geometric progression.
 So if n^{2/3} is sharp, then (1 + SS) behaves like a geometric progression.

・ 同 ト ・ ヨ ト ・ ヨ ト

Multiplicative structure of (1 + SS)

- $|\Pi(P)| \sim |AA(1+SS)|, |A| \sim n^{\frac{2}{3}}, |S| \sim n^{\frac{1}{3}}$
- ▶ Note, if $|BB| \sim |B|$, then B is "like" a geometric progression.
- So if n^{2/3} is sharp, then (1 + SS) behaves like a geometric progression.
- The crux is showing that (1 + SS) cannot behave like a geometric progression, using Plünnecke, Garaev-Shen, Rudnev-Stevens, and "Solymosi squeeze" for convex sets.

Discrete viewpoint Fractal setting

Quick note about finite fields/rings

Covert, Hart, Iosevich, Koh, Pakianathan, Rudnev, Solymosi,

. . .

臣

イロト イヨト イヨト イヨト

Discrete viewpoint Fractal setting

Quick note about finite fields/rings

- Covert, Hart, Iosevich, Koh, Pakianathan, Rudnev, Solymosi, ...
- Finite fields are not ordered, so we can't use convexity.

臣

- 4 回 ト 4 三 ト

Quick note about finite fields/rings

- Covert, Hart, Iosevich, Koh, Pakianathan, Rudnev, Solymosi, ...
- Finite fields are not ordered, so we can't use convexity.
- L² methods lead to assuming Cauchy-Schwarz is sharp (a la Murphy, Petridis)...

・ 同 ト ・ 三 ト ・ 三 ト

Quick note about finite fields/rings

- Covert, Hart, Iosevich, Koh, Pakianathan, Rudnev, Solymosi, ...
- Finite fields are not ordered, so we can't use convexity.
- L² methods lead to assuming Cauchy-Schwarz is sharp (a la Murphy, Petridis)...
- meaning that each dot product has essential equal representation...

Quick note about finite fields/rings

- Covert, Hart, Iosevich, Koh, Pakianathan, Rudnev, Solymosi, ...
- Finite fields are not ordered, so we can't use convexity.
- L² methods lead to assuming Cauchy-Schwarz is sharp (a la Murphy, Petridis)...
- meaning that each dot product has essential equal representation...
- ... but we have no idea how to exploit this.

- 4 回 ト 4 三 ト

Falconer distance problem

Given a compact subset E ⊂ ℝ^d, define Δ(E) to be the set of distances determined by pairs of points in E, that is:

$$\Delta(E) = \{|x - y| : x, y \in E\}.$$

Falconer distance problem

Given a compact subset E ⊂ ℝ^d, define Δ(E) to be the set of distances determined by pairs of points in E, that is:

$$\Delta(E) = \{|x - y| : x, y \in E\}.$$

Conjecture: If s = dim_H E > ^d/₂, then the Lebesgue measure of Δ(E) is positive.

Falconer distance problem

Given a compact subset E ⊂ ℝ^d, define Δ(E) to be the set of distances determined by pairs of points in E, that is:

$$\Delta(E) = \{|x - y| : x, y \in E\}.$$

- Conjecture: If s = dim_H E > ^d/₂, then the Lebesgue measure of Δ(E) is positive.
- ► Falconer proved s > d+1/2 initially. In the plane, the current record is s > 5/4, due to Guth, losevich, Ou, and Wang. Higher dimensional results in various papers by these authors and Du, Ren, Wilson, and Zhang.

(4月) トイヨト イヨト

Discrete viewpoint Fractal setting

Falconer's estimate

• Define the **Riesz potential** of a measure μ to be:

$$I_{lpha}(\mu) = \int \int |x-y|^{-lpha} d\mu(x) d\mu(y).$$

æ

イロト イヨト イヨト イヨト

Falconer's estimate

• Define the **Riesz potential** of a measure μ to be:

$$J_{lpha}(\mu) = \int \int |x-y|^{-lpha} d\mu(x) d\mu(y).$$

In the paper introducing his eponymous distance problem (How large of a Hausdorff dimension guarantees a positive measure of distinct distances?), Falconer proved that if dim_H supp(µ) = s > d+1/2, then for any ε > 0,

$$I_{\mathfrak{s}}(\mu) < \infty \Rightarrow (\mu \times \mu)\{(x, y) : 1 \le |x - y| \le 1 + \epsilon\} \lesssim \epsilon.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Mattila, 1987)

When d = 2, there exists a measure μ that will fail the analog of Falconer's estimate for $s < \frac{d+1}{2}$.

• For
$$s < \frac{d+1}{2}$$
,
 $I_s(\mu) < \infty \Rightarrow (\mu \times \mu)\{(x, y) : 1 \le |x - y| \le 1 + \epsilon\} \lesssim \epsilon$.

臣

・ 同 ト ・ 三 ト ・ 三 ト

Theorem (Mattila, 1987)

When d = 2, there exists a measure μ that will fail the analog of Falconer's estimate for $s < \frac{d+1}{2}$.

► For
$$s < \frac{d+1}{2}$$
,
 $I_{\mathfrak{s}}(\mu) < \infty \Rightarrow (\mu \times \mu)\{(x, y) : 1 \le |x - y| \le 1 + \epsilon\} \lesssim \epsilon$.

• Cartesian product of a Cantor set and an interval.

臣

Theorem (Mattila, 1987)

When d = 2, there exists a measure μ that will fail the analog of Falconer's estimate for $s < \frac{d+1}{2}$.

► For
$$s < \frac{d+1}{2}$$
,
 $I_s(\mu) < \infty \Rightarrow (\mu \times \mu)\{(x, y) : 1 \le |x - y| \le 1 + \epsilon\} \lesssim \epsilon$.

- Cartesian product of a Cantor set and an interval.
- Extended to d = 3 by losevich, and S. in 2010.

Theorem (Mattila, 1987)

When d = 2, there exists a measure μ that will fail the analog of Falconer's estimate for $s < \frac{d+1}{2}$.

• For
$$s < \frac{d+1}{2}$$
,
 $I_s(\mu) < \infty \Rightarrow (\mu \times \mu)\{(x, y) : 1 \le |x - y| \le 1 + \epsilon\} \lesssim \epsilon$.

- Cartesian product of a Cantor set and an interval.
- Extended to d = 3 by losevich, and S. in 2010.
- Unclear how to extend to higher dimensions.

Background Dist Results Dot

Distances Dot products

Mattila-type construction for d = 2, 3

Figure: In dimension 2, we have $[0,1] \times C_{\alpha}$. In dimension 3, we have $C_{\alpha} \times C_{\alpha} \times C_{\beta}$.

臣

Distances Dot products

Non-Euclidean distance

Theorem (losevich, S., 2010–2016)

There exists a centrally symmetric convex body B with smooth boundary and non vanishing curvature and a measure μ such that distances measured by dilates of B will fail the analog of Falconer's estimate for $s < \frac{d+1}{2}$.

► For
$$s < \frac{d+1}{2}$$
,

 $I_{\mathfrak{s}}(\mu) < \infty
eq (\mu imes \mu) \{ (x,y) : 1 \leq |x-y|_B \leq 1+\epsilon \} \lesssim \epsilon.$

æ

Distances Dot products

Non-Euclidean distance

Theorem (losevich, S., 2010-2016)

There exists a centrally symmetric convex body B with smooth boundary and non vanishing curvature and a measure μ such that distances measured by dilates of B will fail the analog of Falconer's estimate for $s < \frac{d+1}{2}$.

► For
$$s < \frac{d+1}{2}$$
,

 $I_{\mathfrak{s}}(\mu) < \infty
eq (\mu imes \mu) \{ (x,y) : 1 \leq |x-y|_B \leq 1+\epsilon \} \lesssim \epsilon.$

Based on a parabolic construction due to Valtr in 2005.

æ

・ 同 ト ・ ヨ ト ・ ヨ ト …

Distances Dot products

Non-Euclidean distance

Theorem (losevich, S., 2010–2016)

There exists a centrally symmetric convex body B with smooth boundary and non vanishing curvature and a measure μ such that distances measured by dilates of B will fail the analog of Falconer's estimate for $s < \frac{d+1}{2}$.

▶ For
$$s < \frac{d+1}{2}$$
,

 $I_{\mathfrak{s}}(\mu) < \infty
eq (\mu imes \mu) \{ (x,y) : 1 \leq |x-y|_B \leq 1+\epsilon \} \lesssim \epsilon.$

- Based on a parabolic construction due to Valtr in 2005.
- Discrete-fractal conversion mechanism Hofmann, losevich, Jorati, Łaba, Uriarte-Tuero.

크

Distances Dot products

Valtr's construction

Figure: For stage *n*, set $m = n^{\frac{1}{3}}$. The points have coordinates $(\frac{i}{m}, \frac{j}{m^2})$, for $i = 1 \dots m$ and $j = 1 \dots m^2$. The "circles" are parabolic arcs glued together. The limit of this construction will be the support of the measure μ .

Falconer-type dot product problem

Given a compact subset E ⊂ ℝ^d, recall Π(E) is the set of dot products determined by pairs of points in E, that is:

$$\Pi(E) = \{x \cdot y : x, y \in E\}.$$

< 17 > <

글 에 에 글 어

Falconer-type dot product problem

Given a compact subset E ⊂ ℝ^d, recall Π(E) is the set of dot products determined by pairs of points in E, that is:

$$\Pi(E) = \{x \cdot y : x, y \in E\}.$$

Conjecture: If s = dim_H E > d/2, then the Lebesgue measure of Π(E) is positive.

Falconer-type dot product problem

Given a compact subset E ⊂ ℝ^d, recall Π(E) is the set of dot products determined by pairs of points in E, that is:

$$\Pi(E) = \{x \cdot y : x, y \in E\}.$$

- Conjecture: If s = dim_H E > ^d/₂, then the Lebesgue measure of Π(E) is positive.
- Partial results (s > d+1/2): Eswarathasan, losevich, Palsson, Taylor, Uriarte-Tuero, etc., avoiding fractal devil's dartboard.

A (10) × (10) × (10) ×

Dot products in two dimensions

Theorem (Eswarathasan, losevich, Taylor, 2010)

For any $s < \frac{3}{2}$, there exists a measure μ on $[0,1]^2$ with $\dim_{\mathcal{H}} supp(\mu) = s$, that will fail the analog of Falconer's estimate for dot products.

▶ In
$$[0,1]^2$$
, for $s < \frac{3}{2}$,

 $I_{\mathfrak{s}}(\mu) < \infty
eq (\mu imes \mu) \{ (x,y) : 1 \leq x \cdot y \leq 1 + \epsilon \} \lesssim \epsilon.$

Dot products in two dimensions

Theorem (Eswarathasan, losevich, Taylor, 2010)

For any $s < \frac{3}{2}$, there exists a measure μ on $[0,1]^2$ with $\dim_{\mathcal{H}} supp(\mu) = s$, that will fail the analog of Falconer's estimate for dot products.

▶ In
$$[0,1]^2$$
, for $s < \frac{3}{2}$,

1

 $I_{s}(\mu) < \infty
eq (\mu imes \mu) \{ (x, y) : 1 \leq x \cdot y \leq 1 + \epsilon \} \lesssim \epsilon.$

Dot products in higher dimensions

Theorem (losevich, S., 2020)

For any $s < \frac{d+1}{2}$, there exists a measure μ on $[0,2]^d$ with $\dim_{\mathcal{H}} supp(\mu) = s$, that will fail the analog of Falconer's estimate for dot products.

▶ In
$$[0,1]^d$$
, for $s < \frac{d+1}{2}$,

 $I_{\mathfrak{s}}(\mu) < \infty
eq (\mu imes \mu) \{ (x,y) : 1 \leq x \cdot y \leq 1 + \epsilon \} \lesssim \epsilon.$

・ 「 ・ ・ こ ・ ・ こ ・ ・

Dot products in higher dimensions

Theorem (losevich, S., 2020)

For any $s < \frac{d+1}{2}$, there exists a measure μ on $[0,2]^d$ with $\dim_{\mathcal{H}} supp(\mu) = s$, that will fail the analog of Falconer's estimate for dot products.

▶ In
$$[0,1]^d$$
, for $s < \frac{d+1}{2}$,

 $I_{\mathfrak{s}}(\mu) < \infty
eq (\mu imes \mu) \{ (x,y) : 1 \leq x \cdot y \leq 1 + \epsilon \} \lesssim \epsilon.$

 Based on the Valtr construction, but with more arithmetic complexity, and tougher energy estimates.

A (10) × (10) × (10) ×

Distances Dot products

Dot product construction

Figure: Similar to the Valtr construction, but now we need to intersect points with lines. Here we have a family of m red lines, of m slopes. These red lines are the set of points that have dot product one with the red points.

Distances Dot products

Pinned dot products

$$\Pi_x(E) = \{x \cdot y : y \in E\}.$$

Theorem (losevich, Taylor, Uriarte-Tuero, 2016) For any $E \subseteq \mathbb{R}^d$, with dim $E = s > \frac{d+1}{2}$, the Lebesgue measure of $\Pi_x(E)$ is positive.

臣

- 4 同 ト 4 ヨ ト - 4 ヨ ト -

Distances Dot products

Edge weighted trees

Figure: Trees are acyclic connected graphs. These two trees have the same shape, but different weights.

臣

- ∢ ⊒ ⇒

A (1) < A (2)</p>
Distances Dot products

Continuous trees - distances

$$\Delta_x(E) = \{|x-y| : y \in E\}.$$

Theorem (Ou and Taylor, 2020)

Let $E \subseteq R^2$ be a compact set satisfying $\dim_{\mathcal{H}}(E) > \frac{5}{4}$, then there exists a point $x \in E$ such that for all integers $k \ge 2$, we have that any k-tree T of any shape pinned at any vertex has a positive k-dimensional Lebesgue measure of distinct edge weights determined by distances.

Corollary (Bright, Marshall, S., 2023+)

Let $E \subseteq R^2$ be a compact set satisfying $\dim_{\mathcal{H}}(E) > \frac{3}{2}$, then there exists a point $x \in E$ such that for all integers $k \ge 2$, we have that any k-tree T of any shape pinned at any vertex has a positive k-dimensional Lebesgue measure of distinct edge weights determined by dot products.

Corollary (Bright, Marshall, S., 2023+)

Let $E \subseteq R^2$ be a compact set satisfying $\dim_{\mathcal{H}}(E) > \frac{3}{2}$, then there exists a point $x \in E$ such that for all integers $k \ge 2$, we have that any k-tree T of any shape pinned at any vertex has a positive k-dimensional Lebesgue measure of distinct edge weights determined by dot products.

Uses Orponen-Shmerkin-Wang.

Corollary (Bright, Marshall, S., 2023+)

Let $E \subseteq R^2$ be a compact set satisfying $\dim_{\mathcal{H}}(E) > \frac{3}{2}$, then there exists a point $x \in E$ such that for all integers $k \ge 2$, we have that any k-tree T of any shape pinned at any vertex has a positive k-dimensional Lebesgue measure of distinct edge weights determined by dot products.

- Uses Orponen-Shmerkin-Wang.
- Nadjimzadah proved an unpinned version in 2022.

・ 同 ト ・ 三 ト ・ 三 ト

Corollary (Bright, Marshall, S., 2023+)

Let $E \subseteq R^2$ be a compact set satisfying $\dim_{\mathcal{H}}(E) > \frac{3}{2}$, then there exists a point $x \in E$ such that for all integers $k \ge 2$, we have that any k-tree T of any shape pinned at any vertex has a positive k-dimensional Lebesgue measure of distinct edge weights determined by dot products.

- Uses Orponen-Shmerkin-Wang.
- Nadjimzadah proved an unpinned version in 2022.
- Simple proof for Ahlfors regular by modifying Moser (1952).

Corollary (Bright, Marshall, S., 2023+)

For any $s < \frac{d+1}{2}$, and tree T on k edges, there exists a measure μ on $[0,2]^d$ with dim_H supp $(\mu) = s$, and a set of edge weights \vec{w} so that the analog of Falconer's estimate for T with dot product edge weights will fail.

▶ In
$$[0,1]^d$$
, for $s < rac{d+1}{2}, I_s(\mu) < \infty \neq$

$$\mu^{k+1}\{(x_j, y_j): w_j \leq x_j \cdot y_j \leq w_j + \epsilon, j = 1, \dots, k\} \lesssim \epsilon^k.$$

Corollary (Bright, Marshall, S., 2023+)

For any $s < \frac{d+1}{2}$, and tree T on k edges, there exists a measure μ on $[0,2]^d$ with dim_H supp $(\mu) = s$, and a set of edge weights \vec{w} so that the analog of Falconer's estimate for T with dot product edge weights will fail.

▶ In
$$[0,1]^d$$
, for $s < rac{d+1}{2}, I_s(\mu) < \infty
ightarrow$

 $\mu^{k+1}\{(x_j, y_j): w_j \leq x_j \cdot y_j \leq w_j + \epsilon, j = 1, \ldots, k\} \lesssim \epsilon^k.$

イロン 不同 とうほう 不同 とう

Corollary (Bright, Marshall, S., 2023+)

For any s < 1, and a **path** T on k edges, there exists a measure μ on $[0, 2]^2$ with dim_H supp $(\mu) = s$, and a set of edge weights \vec{w} so that the analog of Falconer's estimate for T with dot product edge weights will fail.

▶ In [0,1]², for
$$s < 1$$
, $I_s(\mu) < \infty \Rightarrow$
 $\mu^{k+1}\{(x_j, y_j) : w_j \le x_j \cdot y_j \le w_j + \epsilon, j = 1, ..., k\} \lesssim \epsilon^k$.

Corollary (Bright, Marshall, S., 2023+)

For any s < 1, and a **path** T on k edges, there exists a measure μ on $[0, 2]^2$ with dim_H supp $(\mu) = s$, and a set of edge weights \vec{w} so that the analog of Falconer's estimate for T with dot product edge weights will fail.

▶ In
$$[0,1]^2$$
, for $s < 1, I_s(\mu) < \infty
ightarrow$

 $\mu^{k+1}\{(x_j, y_j): w_j \leq x_j \cdot y_j \leq w_j + \epsilon, j = 1, \ldots, k\} \lesssim \epsilon^k.$

▶ Uses the construction in Kilmer, Marshall, and S.

イロン 不同 とくほど 不同 とう

Corollary (Bright, Marshall, S., 2023+)

For any s < 1, and a **path** T on k edges, there exists a measure μ on $[0, 2]^2$ with dim_H supp $(\mu) = s$, and a set of edge weights \vec{w} so that the analog of Falconer's estimate for T with dot product edge weights will fail.

▶ In $[0,1]^2$, for $s < 1, I_s(\mu) < \infty \Rightarrow$

 $\mu^{k+1}\{(x_j, y_j): w_j \leq x_j \cdot y_j \leq w_j + \epsilon, j = 1, \ldots, k\} \lesssim \epsilon^k.$

- Uses the construction in Kilmer, Marshall, and S.
- Can be slightly more general than paths.

イロン 不同 とうほう 不同 とう

Corollary (Bright, Marshall, S., 2023+)

For any s < 1, and a **path** T on k edges, there exists a measure μ on $[0,2]^2$ with dim_H supp $(\mu) = s$, and a set of edge weights \vec{w} so that the analog of Falconer's estimate for T with dot product edge weights will fail.

▶ In $[0,1]^2$, for $s < 1, I_s(\mu) < \infty \Rightarrow$

 $\mu^{k+1}\{(x_j, y_j): w_j \leq x_j \cdot y_j \leq w_j + \epsilon, j = 1, \dots, k\} \lesssim \epsilon^k.$

- Uses the construction in Kilmer, Marshall, and S.
- Can be slightly more general than paths.
- Related to work by Barker and S., later improved by Lund.

イロト イヨト イヨト イヨト

Background Distances Results Dot products

THANKS! ^-^

æ,

・ロト ・四ト ・ヨト ・ヨト