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Notation

Asymptotics. Let X and Y depend on an integer parameter n.

I We write X . Y when there exists a constant C , independent
of n, such that X ≤ CY , for all sufficiently large n, or
X = O(Y ).

I If X . Y and Y . X , we write X ≈ Y .

I We write X / Y when for every ε > 0, there exists a number,
Cε, independent of n, such that X ≤ Cεn

εY .

I With the symbol /, we are typically burying logarithmic
factors.
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Unit distance problem for d = 2

I Define u2(n) to be the maximum number of times that a
distance can occur in a set of n points in the plane. Bound
incidences of points and unit circles.

I Conj: (Erdős, 1946)
u2(n) / n.

I Remember buried log in /.

I Thm: (Spencer, Szemerédi, and Trotter, 1984)

u2(n) . n
4
3 .

I See Brass, Moser, Pach for more.
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Unit distance problem for d = 3

I Define u3(n) to be the maximum number of times that a
distance can occur in a set of n points in R3. Bound
incidences of points and unit spheres.

I Conj:

u3(n) . n
4
3 .

I Thm: (Zahl, 2017) For any ε > 0,

u3(n) . n
295
197

+ε.
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Unit distance problem for d ≥ 4

Figure: In dimensions 4 and up, there can be & n2 unit distances.
Counterexample due to Lenz: n/2 points on the unit circle in the first
two dimensions, the rest on a unit circle in the next two dimensions.
Note that this is a “low-dimensional” set in higher dimensions.
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Unit dot product problem

I Given a large finite set of points, how often can a particular
(typically nonzero) dot product occur? Bound incidences of
points and hyperplanes.

I Thm: (Szemerédi and Trotter, 1983) For any set of n points
and m lines in the plane, the number of pairs (p, `) with p ∈ `
is bounded above by

. (nm)
2
3 + n + m.

I This gives a sharp bound of n
4
3 for n points in the plane.

I Simple (“low-dimensional”) construction shows the bound is
n2 in dimensions three and higher.
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Distinct distances problem

I Conj: (Erdős, 1946) Any large finite set of n points in the
plane determine ' n distinct distances.

I Recall that there could be a log buried in the ' .

I This was proved by Guth and Katz in 2010.
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Distinct dot products problem

Π(P) = {x · y : x , y ∈ P}.

I Conj: Given any large finite set P of n points in the plane,
|Π(P)| ' n.

I Thm: Given any large finite set P of n points in the plane,

|Π(P)| & n
2
3 . (Corollary of S-T)

I Thm:(Hanson, Roche-Newton, S., 2021) Improved the
exponent to 2

3 + 1
2739 .
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Additive combinatorics

Given A,B ⊂ R,

I Their sumset is A + B := {a + b : a ∈ A, b ∈ B}.
I Their product set is AB := {ab : a ∈ A, b ∈ B}.
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Devil’s dartboard sketch

Suppose for contradiction that n
2
3 is sharp.

I Each of n
2
3 distinct dot products should occur n

4
3 times.

I p · p = |p|2, so P lives on n
2
3 circles centered at the origin.

I The points should live on n
1
3 lines through the origin. (S-T)

I Rotate and scale so that (1, 0) is in our set.
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Devil’s dartboard sketch (cont.)
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Devil’s dartboard sketch (cont.)

Suppose for contradiction that n
2
3 is sharp.

I Call the n
1
3 slopes of the lines S .

I The x-axis points are (a, 0), where a ∈ A, and

|A| ∼ |AA| ∼ n
2
3 .

I Every other point has coordinates (a, sa).

I

Π(P) = {(a, sa) · (a′, s ′a′)} = {aa′ + ss ′aa′} = AA(1 + SS)
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Multiplicative structure of (1 + SS)

I
|Π(P)| ∼ |AA(1 + SS)|, |A| ∼ n

2
3 , |S | ∼ n

1
3

I Note, if |BB| ∼ |B|, then B is “like” a geometric progression.

I So if n
2
3 is sharp, then (1 + SS) behaves like a geometric

progression.

I The crux is showing that (1 + SS) cannot behave like a
geometric progression, using Plünnecke, Garaev-Shen,
Rudnev-Stevens, and “Solymosi squeeze” for convex sets.
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Quick note about finite fields/rings

I Covert, Hart, Iosevich, Koh, Pakianathan, Rudnev, Solymosi,
. . .

I Finite fields are not ordered, so we can’t use convexity.

I L2 methods lead to assuming Cauchy-Schwarz is sharp (a la
Murphy, Petridis). . .

I . . . meaning that each dot product has essential equal
representation. . .

I . . . but we have no idea how to exploit this.
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Falconer distance problem

I Given a compact subset E ⊂ Rd , define ∆(E ) to be the set of
distances determined by pairs of points in E , that is:

∆(E ) = {|x − y | : x , y ∈ E}.

I Conjecture: If s = dimH E > d
2 , then the Lebesgue measure

of ∆(E ) is positive.

I Falconer proved s > d+1
2 initially. In the plane, the current

record is s > 5
4 , due to Guth, Iosevich, Ou, and Wang. Higher

dimensional results in various papers by these authors and Du,
Ren, Wilson, and Zhang.
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Falconer’s estimate

I Define the Riesz potential of a measure µ to be:

Iα(µ) =

∫ ∫
|x − y |−αdµ(x)dµ(y).

I In the paper introducing his eponymous distance problem
(How large of a Hausdorff dimension guarantees a positive
measure of distinct distances?), Falconer proved that if
dimH supp(µ) = s > d+1

2 , then for any ε > 0,

Is(µ) <∞⇒ (µ× µ){(x , y) : 1 ≤ |x − y | ≤ 1 + ε} . ε.
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Results

Distances
Dot products

Euclidean distance

Theorem (Mattila, 1987)

When d = 2, there exists a measure µ that will fail the analog of
Falconer’s estimate for s < d+1

2 .

I For s < d+1
2 ,

Is(µ) <∞ 6⇒ (µ× µ){(x , y) : 1 ≤ |x − y | ≤ 1 + ε} . ε.

I Cartesian product of a Cantor set and an interval.

I Extended to d = 3 by Iosevich, and S. in 2010.

I Unclear how to extend to higher dimensions.
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Mattila-type construction for d = 2, 3

Figure: In dimension 2, we have [0, 1]× Cα. In dimension 3, we have
Cα × Cα × Cβ .
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Non-Euclidean distance

Theorem (Iosevich, S., 2010–2016)

There exists a centrally symmetric convex body B with smooth
boundary and non vanishing curvature and a measure µ such that
distances measured by dilates of B will fail the analog of Falconer’s
estimate for s < d+1

2 .

I For s < d+1
2 ,

Is(µ) <∞ 6⇒ (µ× µ){(x , y) : 1 ≤ |x − y |B ≤ 1 + ε} . ε.

I Based on a parabolic construction due to Valtr in 2005.

I Discrete-fractal conversion mechanism - Hofmann, Iosevich,
Jorati,  Laba, Uriarte-Tuero.
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Valtr’s construction

Figure: For stage n, set m = n
1
3 . The points have coordinates ( i

m ,
j
m2 ),

for i = 1 . . .m and j = 1 . . .m2. The “circles” are parabolic arcs glued
together. The limit of this construction will be the support of the
measure µ.
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Falconer-type dot product problem

I Given a compact subset E ⊂ Rd , recall Π(E ) is the set of dot
products determined by pairs of points in E , that is:

Π(E ) = {x · y : x , y ∈ E}.

I Conjecture: If s = dimH E > d
2 , then the Lebesgue measure

of Π(E ) is positive.

I Partial results (s > d+1
2 ): Eswarathasan, Iosevich, Palsson,

Taylor, Uriarte-Tuero, etc., avoiding fractal devil’s dartboard.
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Dot products in two dimensions

Theorem (Eswarathasan, Iosevich, Taylor, 2010)

For any s < 3
2 , there exists a measure µ on [0, 1]2 with

dimH supp(µ) = s, that will fail the analog of Falconer’s estimate
for dot products.

I In [0, 1]2, for s < 3
2 ,

Is(µ) <∞ 6⇒ (µ× µ){(x , y) : 1 ≤ x · y ≤ 1 + ε} . ε.

I Similar to Mattila’s construction.
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Dot products in higher dimensions

Theorem (Iosevich, S., 2020)

For any s < d+1
2 , there exists a measure µ on [0, 2]d with

dimH supp(µ) = s, that will fail the analog of Falconer’s estimate
for dot products.

I In [0, 1]d , for s < d+1
2 ,

Is(µ) <∞ 6⇒ (µ× µ){(x , y) : 1 ≤ x · y ≤ 1 + ε} . ε.

I Based on the Valtr construction, but with more arithmetic
complexity, and tougher energy estimates.
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Dot product construction

Figure: Similar to the Valtr construction, but now we need to intersect
points with lines. Here we have a family of m red lines, of m slopes.
These red lines are the set of points that have dot product one with the
red points.
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Pinned dot products

Πx(E ) = {x · y : y ∈ E}.

Theorem (Iosevich, Taylor, Uriarte-Tuero, 2016)

For any E ⊆ Rd , with dimE = s > d+1
2 , the Lebesgue measure of

Πx(E ) is positive.
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Edge weighted trees

Figure: Trees are acyclic connected graphs. These two trees have the
same shape, but different weights.
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Continuous trees - distances

∆x(E ) = {|x − y | : y ∈ E}.

Theorem (Ou and Taylor, 2020)

Let E ⊆ R2 be a compact set satisfying dimH(E ) > 5
4 , then there

exists a point x ∈ E such that for all integers k ≥ 2, we have that
any k-tree T of any shape pinned at any vertex has a positive
k-dimensional Lebesgue measure of distinct edge weights
determined by distances.
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Continuous trees - dot products

Corollary (Bright, Marshall, S., 2023+)

Let E ⊆ R2 be a compact set satisfying dimH(E ) > 3
2 , then there

exists a point x ∈ E such that for all integers k ≥ 2, we have that
any k-tree T of any shape pinned at any vertex has a positive
k-dimensional Lebesgue measure of distinct edge weights
determined by dot products.

I Uses Orponen-Shmerkin-Wang.

I Nadjimzadah proved an unpinned version in 2022.

I Simple proof for Ahlfors regular by modifying Moser (1952).

Steven Senger - Missouri State University Falconer dot products 29/32



Background
Results

Distances
Dot products

Continuous trees - dot products

Corollary (Bright, Marshall, S., 2023+)

Let E ⊆ R2 be a compact set satisfying dimH(E ) > 3
2 , then there

exists a point x ∈ E such that for all integers k ≥ 2, we have that
any k-tree T of any shape pinned at any vertex has a positive
k-dimensional Lebesgue measure of distinct edge weights
determined by dot products.

I Uses Orponen-Shmerkin-Wang.

I Nadjimzadah proved an unpinned version in 2022.

I Simple proof for Ahlfors regular by modifying Moser (1952).

Steven Senger - Missouri State University Falconer dot products 29/32



Background
Results

Distances
Dot products

Continuous trees - dot products

Corollary (Bright, Marshall, S., 2023+)

Let E ⊆ R2 be a compact set satisfying dimH(E ) > 3
2 , then there

exists a point x ∈ E such that for all integers k ≥ 2, we have that
any k-tree T of any shape pinned at any vertex has a positive
k-dimensional Lebesgue measure of distinct edge weights
determined by dot products.

I Uses Orponen-Shmerkin-Wang.

I Nadjimzadah proved an unpinned version in 2022.

I Simple proof for Ahlfors regular by modifying Moser (1952).

Steven Senger - Missouri State University Falconer dot products 29/32



Background
Results

Distances
Dot products

Continuous trees - dot products

Corollary (Bright, Marshall, S., 2023+)

Let E ⊆ R2 be a compact set satisfying dimH(E ) > 3
2 , then there

exists a point x ∈ E such that for all integers k ≥ 2, we have that
any k-tree T of any shape pinned at any vertex has a positive
k-dimensional Lebesgue measure of distinct edge weights
determined by dot products.

I Uses Orponen-Shmerkin-Wang.

I Nadjimzadah proved an unpinned version in 2022.

I Simple proof for Ahlfors regular by modifying Moser (1952).

Steven Senger - Missouri State University Falconer dot products 29/32



Background
Results

Distances
Dot products

Dot product trees in higher dimensions

Corollary (Bright, Marshall, S., 2023+)

For any s < d+1
2 , and tree T on k edges, there exists a measure µ

on [0, 2]d with dimH supp(µ) = s, and a set of edge weights ~w so
that the analog of Falconer’s estimate for T with dot product edge
weights will fail.

I In [0, 1]d , for s < d+1
2 , Is(µ) <∞ 6⇒

µk+1{(xj , yj) : wj ≤ xj · yj ≤ wj + ε, j = 1, . . . , k} . εk .

I Uses the construction in Iosevich and S., (2020).
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Dot product trees in higher dimensions

Corollary (Bright, Marshall, S., 2023+)

For any s < 1, and a path T on k edges, there exists a measure µ
on [0, 2]2 with dimH supp(µ) = s, and a set of edge weights ~w so
that the analog of Falconer’s estimate for T with dot product edge
weights will fail.

I In [0, 1]2, for s < 1, Is(µ) <∞ 6⇒

µk+1{(xj , yj) : wj ≤ xj · yj ≤ wj + ε, j = 1, . . . , k} . εk .

I Uses the construction in Kilmer, Marshall, and S.

I Can be slightly more general than paths.

I Related to work by Barker and S., later improved by Lund.
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