Common Fundamental Domains

Mihalis Kolountzakis

University of Crete

2024 IBS-DIMAG Workshop on Combinatorics and Geometric Measure Theory Daejeon, Korea

July 16, 2024

The classical Steinhaus question

▶ Steinhaus (1950s): Are there $A, B \subseteq \mathbb{R}^2$ such that

```
|	au A \cap B| = 1, for every rigid motion 	au?
```

Are there two subsets of the plane which, no matter how moved, always intersect at exactly one point?

THE CLASSICAL STEINHAUS QUESTION

▶ Steinhaus (1950s): Are there $A, B \subseteq \mathbb{R}^2$ such that

```
||	au A \cap B| = 1, for every rigid motion 	au?
```

Are there two subsets of the plane which, no matter how moved, always intersect at exactly one point?

Yes.

The classical Steinhaus question

► Equivalent:

$$\sum_{b\in B} \mathbf{1}_{
ho A}(x-b) = 1, \quad ext{for all rotations }
ho ext{ and for all } x\in \mathbb{R}^2.$$

The classical Steinhaus question

► Equivalent:

$$\sum_{b\in B} \mathbf{1}_{
ho \mathcal{A}}(x-b) = 1, \quad ext{for all rotations }
ho ext{ and for all } x\in \mathbb{R}^2.$$

In tiling language:

Every rotation of A tiles (partitions) the plane when translated at the locations B.

Fixing $B = \mathbb{Z}^2$: the lattice Steinhaus question

► Equivalent: A is a fundamental domain of all pZ². Or, A tiles the plane by translations at any pZ².

 Major result: Jackson and Mauldin, 2002: Yes. But no measurability.

 Major result: Jackson and Mauldin, 2002: Yes. But no measurability.

► Can A be Lebesgue measurable? We interpret tiling almost everywhere.

- Major result: Jackson and Mauldin, 2002: Yes. But no measurability.
- ► Can A be Lebesgue measurable? We interpret tiling almost everywhere.
- Results (in the negative direction) by Sierpiński (1958), Croft (1982), Beck (1989), K. (1996):
 - "Best" so far: (K. & Wolff (1999))

If such a measurable A exists then it must be large at infinity:

$$\int_A |x|^{\frac{46}{27}+\epsilon} \, dx = \infty.$$

- Major result: Jackson and Mauldin, 2002: Yes. But no measurability.
- ► Can A be Lebesgue measurable? We interpret tiling almost everywhere.
- Results (in the negative direction) by Sierpiński (1958), Croft (1982), Beck (1989), K. (1996):
 - "Best" so far: (K. & Wolff (1999))

If such a measurable A exists then it must be large at infinity:

$$\int_A |x|^{\frac{46}{27}+\epsilon} \, dx = \infty.$$

In higher dimension:

K. & Wolff (1999), K. & Papadimitrakis (2002): \implies No measurable Steinhaus sets exist for \mathbb{Z}^d , d > 3.

No Jackson - Mauldin analogue for $d \ge 3$.

The zeros of the Fourier Transform

▶ For A to have the Steinhaus property it is equivalent

that $\widehat{\mathbf{1}_A}$ must vanish on all circles through lattice points.

The zeros of the Fourier Transform

▶ For A to have the Steinhaus property it is equivalent

that $\widehat{\mathbf{1}_{\mathcal{A}}}$ must vanish on all circles through lattice points.

• Too many zeros imply strong decay of $\widehat{\mathbf{1}_A}$ near infinity.

This implies (uncertainty principle) slow decay of $\mathbf{1}_A$ near infinity.

LATTICE STEINHAUS FOR FINITELY MANY LATTICES

Given lattices Λ₁,..., Λ_n ⊆ ℝ^d all of volume 1 can we find measurable A which tiles with all Λ_j?

LATTICE STEINHAUS FOR FINITELY MANY LATTICES

• Given lattices $\Lambda_1, \ldots, \Lambda_n \subseteq \mathbb{R}^d$ all of volume 1 can we find measurable A which tiles with all Λ_j ?

Generically yes!

If the sum $\Lambda_1^* + \cdots + \Lambda_n^*$ is direct then Kronecker-type density theorems allow us to rearrange a fundamental domain of one lattice to accomodate the others.

LATTICE STEINHAUS FOR FINITELY MANY LATTICES

QUESTION

Is there a *bounded* common tile for $\Lambda_1, \ldots, \Lambda_N$?

AN APPLICATION IN GABOR ANALYSIS

▶ If K, L are two lattices in \mathbb{R}^d with

 $\operatorname{vol} K \cdot \operatorname{vol} L = 1,$

can we find $g \in L^2(\mathbb{R}^d)$, such that the (K, L) time-frequency translates

$$g(x-k)e^{2\pi i\ell\cdot x}, \quad (k\in K, \ell\in L)$$

form an orthogonal basis of $L^2(\mathbb{R}^d)$?

AN APPLICATION IN GABOR ANALYSIS

▶ If K, L are two lattices in \mathbb{R}^d with

 $\operatorname{vol} K \cdot \operatorname{vol} L = 1,$

can we find $g \in L^2(\mathbb{R}^d)$, such that the (K, L) time-frequency translates

$$g(x-k)e^{2\pi i\ell\cdot x}, \quad (k\in K, \ell\in L)$$

form an orthogonal basis of $L^2(\mathbb{R}^d)$?

- ► Han and Wang (2000): Since $vol(L^*) = vol(K)$ let $g = \mathbf{1}_E$ where *E* is a **common tile** for *K*, L^* .
- Then L forms an orthogonal basis for $L^2(E)$.

Space partitioned in K-copies of E and on each copy L is an orthogonal basis.

Multi-tiling functions

• A function f tiles with the set of translates Λ if

$$\sum_{\lambda \in \Lambda} f(x - \lambda) = \text{const.} \quad \text{a.e. } x \in \mathbb{R}^d.$$

Multi-tiling functions

• A function f tiles with the set of translates Λ if

$$\sum_{\lambda \in \Lambda} f(x - \lambda) = \text{const.} \quad \text{a.e. } x \in \mathbb{R}^d.$$

▶ We can find a common tiling function *f* for any set of lattices

$$\Lambda_1,\ldots,\Lambda_N\subseteq\mathbb{R}^d.$$

Just take (the D_j are fundamental domains of Λ_j)

$$f=\mathbf{1}_{D_1}*\cdots*\mathbf{1}_{D_N}$$

Multi-tiling functions

• A function f tiles with the set of translates Λ if

$$\sum_{\lambda \in \Lambda} f(x - \lambda) = ext{const.}$$
 a.e. $x \in \mathbb{R}^d$.

▶ We can find a common tiling function *f* for any set of lattices

$$\Lambda_1,\ldots,\Lambda_N\subseteq\mathbb{R}^d.$$

Just take (the D_j are fundamental domains of Λ_j)

$$f=\mathbf{1}_{D_1}*\cdots*\mathbf{1}_{D_N}$$

For such an *f* if $\operatorname{vol} \Lambda_j \gtrsim 1$ then

diam supp $f \gtrsim N$.

Multi-tiling functions: diameter lower bounds

• (K. and Wolff, 1997): If $f \in L^1(\mathbb{R}^d)$, with $\int f \neq 0$, tiles \mathbb{R}^d with $\Lambda_1, \ldots, \Lambda_N$, and

 $\Lambda_i \cap \Lambda_j = \{0\}$ and $\operatorname{vol} \Lambda_j \sim 1$

then

diam supp $f \gtrsim N^{1/d}$.

Multi-tiling functions: diameter lower bounds

• (K. and Wolff, 1997): If $f \in L^1(\mathbb{R}^d)$, with $\int f \neq 0$, tiles \mathbb{R}^d with $\Lambda_1, \ldots, \Lambda_N$, and

 $\Lambda_i \cap \Lambda_j = \{0\}$ and $\operatorname{vol} \Lambda_j \sim 1$

then

diam supp $f \gtrsim N^{1/d}$.

QUESTION

What is the smallest diam $\operatorname{supp} f$?

We know

 $N^{1/d} \lesssim \operatorname{diam \, supp} f \lesssim N.$

at least when $\Lambda_i \cap \Lambda_j = \{0\}$.

Multi-tiling functions: A case of large diameter

• Take
$$\alpha_1, \ldots, \alpha_N \in (\frac{1}{2}, 1)$$
 to be \mathbb{Q} -linearly independent and

$$\Lambda_j = \mathbb{Z}(\alpha_j, 0) + \mathbb{Z}(0, \alpha_j^{-1}), \quad \Lambda_j^* = \mathbb{Z}(\alpha_j^{-1}, 0) + \mathbb{Z}(0, \alpha_j).$$

Multi-tiling functions: a case of large diameter

• Take
$$\alpha_1, \ldots, \alpha_N \in (\frac{1}{2}, 1)$$
 to be \mathbb{Q} -linearly independent and

$$\Lambda_j = \mathbb{Z}(\alpha_j, 0) + \mathbb{Z}(0, \alpha_j^{-1}), \quad \Lambda_j^* = \mathbb{Z}(\alpha_j^{-1}, 0) + \mathbb{Z}(0, \alpha_j).$$

►
$$f$$
 tiles with all $\Lambda_j \implies \hat{f} \equiv 0$ on Λ_j^* .
 \hat{f} has zeros of density $\gtrsim N$ along the axes. So
diam supp $f \gtrsim N$. (K. & Papageorgiou, 2022)

Multi-tiling functions: A case of large diameter

QUESTION

Is there any case of "generic" lattices with a common tile f s.t.

diam supp f = o(N)?

Multi-tiling functions: the volume of the support

• If
$$f = \mathbf{1}_{D_1} * \cdots * \mathbf{1}_{D_N}$$
 or (more generally)
 $f = f_1 * \cdots * f_N$, where $f_j \ge 0$ tiles with Λ_j (1)

then

$$\operatorname{supp} f = \operatorname{supp} f_1 + \cdots + \operatorname{supp} f_N$$

and (Brunn - Minkowski inequality)

$$|\operatorname{supp} f| \geq \left(|\operatorname{supp} f_1|^{1/d} + \cdots + |\operatorname{supp} f_N|^{1/d}\right)^d \gtrsim N^d.$$

Multi-tiling functions: the volume of the support

• If
$$f = \mathbf{1}_{D_1} * \cdots * \mathbf{1}_{D_N}$$
 or (more generally)
 $f = f_1 * \cdots * f_N$, where $f_j \ge 0$ tiles with Λ_j

then

$$\operatorname{supp} f = \operatorname{supp} f_1 + \cdots + \operatorname{supp} f_N$$

and (Brunn - Minkowski inequality)

$$|\operatorname{supp} f| \geq \left(|\operatorname{supp} f_1|^{1/d} + \cdots + |\operatorname{supp} f_N|^{1/d} \right)^d \gtrsim N^d.$$

QUESTION

What if we drop nonnegativity from (1)?

What if f is any common tile of the Λ_j , not given by (1)?

(1)

Multi-tiling sets: Giving up measurability

▶ If G_1, \ldots, G_N are subgroups of G it is always enough to find a common fundamental domain (a common tile) of the G_i in

Multi-tiling sets: Giving up measurability

(K. 1997) If the lattices Λ₁,..., Λ_N in R^d have
 (a) the same volume and
 (b) a direct sum
 then they have a bounded common fundamental domain.

Multi-tiling sets: Giving up measurability

(K. 1997) If the lattices Λ₁,..., Λ_N in ℝ^d have
 (a) the same volume and
 (b) a direct sum
 then they have a bounded common fundamental domain.

► A consequence of the "marriage" theorem:

Theorem

If $\operatorname{vol} \Lambda_i = \operatorname{vol} \Lambda_i$ then there is a bijection $f_{ij} : \Lambda_i \to \Lambda_i$ with

|x - f(x)| bounded.

Suppose

$$\Lambda_1 = \mathbb{Z}^d$$
 and $\Lambda_2 = \alpha \mathbb{Z}^d$ (α irrational, $\alpha > 1$).

Then Λ_1, Λ_2 have no bounded common fundamental domain.

No measurability assumed!

Proof for d = 1

▶ If *F* is a bounded FD in $G = \Lambda_1 + \Lambda_2 = \{m + n\alpha : m, n \in \mathbb{Z}\}$:

$$F = m_i - n_i \alpha : i = 1, 2, \ldots \subseteq [-M, M].$$

Proof for d = 1

▶ If *F* is a bounded FD in $G = \Lambda_1 + \Lambda_2 = \{m + n\alpha : m, n \in \mathbb{Z}\}$:

$$F = m_i - n_i \alpha : i = 1, 2, \ldots \subseteq [-M, M].$$

▶ All m_i , n_i must be unique and $\mathbb{Z} = \{m_i\} = \{n_i\}$. Renumbering: $F = \{m - n_m \alpha : m \in \mathbb{Z}\}$.

Proof for d = 1

▶ If *F* is a bounded FD in $G = \Lambda_1 + \Lambda_2 = \{m + n\alpha : m, n \in \mathbb{Z}\}$:

$$F = m_i - n_i \alpha : i = 1, 2, \ldots \subseteq [-M, M].$$

► All m_i , n_i must be unique and $\mathbb{Z} = \{m_i\} = \{n_i\}$. Renumbering: $F = \{m - n_m \alpha : m \in \mathbb{Z}\}$.

• Restricting
$$-R \leq m \leq R$$
 we get

$$|m-n_m\alpha|\leq M.$$

or

$$-\frac{R+M}{\alpha} \leq n_m \leq \frac{R+M}{\alpha}.$$

► ~ 2*R* values of *m* correspond to only ~ $\frac{2}{\alpha}R$ values of n_m Contradiction, as all n_m must be different (K. & Papageorgiou, 2022).

TILING FINITE ABELIAN GROUPS WITH A FUNCTION

•
$$G_1, G_2$$
 subgroups of $G, f: G \to \mathbb{R}^{\geq 0}$ s.t.

$$\forall x \in G: \quad \sum_{g_1 \in G_1} f(x - g_1) = |G_1|, \quad \sum_{g_2 \in G_2} f(x - g_2) = |G_2|.$$

For example $f(x) \equiv 1$.

TILING FINITE ABELIAN GROUPS WITH A FUNCTION

•
$$G_1, G_2$$
 subgroups of $G, f: G \to \mathbb{R}^{\geq 0}$ s.t.

$$\forall x \in G: \quad \sum_{g_1 \in G_1} f(x - g_1) = |G_1|, \quad \sum_{g_2 \in G_2} f(x - g_2) = |G_2|.$$

For example $f(x) \equiv 1$.

QUESTION

How small can |supp f| be?

Write

$$S_{G_1,G_2}^G = \min \{ | \operatorname{supp} f | : f * \mathbf{1}_{G_1} \equiv |G_1| \mathbf{1}_G, f * \mathbf{1}_{G_2} \equiv |G_2| \mathbf{1}_G \}.$$

• Always
$$S_{G_1,G_2}^G \ge \max\{[G:G_1],[G:G_2]\}.$$

REDUCTION TO PRODUCT GROUPS

• If $\Gamma = G/(G_1 \cap G_2)$, $\Gamma_i = G_i/(G_1 \cap G_2)$ then

$$S^{\mathcal{G}}_{\mathcal{G}_1,\mathcal{G}_2} = S^{\Gamma}_{\Gamma_1,\Gamma_2}.$$
 (2)

• Can assume: $G = G_1 \times G_2$.

THE PROBLEM IN MATRIX FORM

Group structure irrelevant.

Find $m \times n$ matrix A with

row sums equal to n, column sums equal to m.

• Minimize the support. Call S(m, n) the minumum.

THE PROBLEM IN MATRIX FORM

Group structure irrelevant.

Find $m \times n$ matrix A with

row sums equal to n, column sums equal to m.

- Minimize the support. Call S(m, n) the minumum.
- Statisticians call these *copulas* and use them a lot.
 A generalization of doubly stochastic matrices.

The case m divides n

► Smallest possible support, since we must have ≥ 1 element/column.

S(km, m) = km.

The case n = km + 1

▶ Also smallest possible support, since $A_{ij} \leq m$ implies

at least k+1 terms per row,

so

$$S(km + 1, m) = (k + 1)m = m + (km + 1) - 1$$

(K. & Papageorgiou, 2022)

The general case: Loukaki, 2022, Etkind and Lev, 2022

Theorem

 $S(m,n) = m + n - \gcd(m,n)$

Tiling ${\mathbb R}$ with two lattices: A lower bound for the length

Suppose $f : \mathbb{R} \to \mathbb{R}^{\geq 0}$ is measurable and tiles with both $\Lambda_1 = \mathbb{Z}$ and with $\Lambda_2 = \alpha \mathbb{Z}$, where $\alpha \in (0, 1)$:

$$\sum_{n\in\mathbb{Z}}f(x-n)=1,\quad \sum_{n\in\mathbb{Z}}f(x-n\alpha)=\frac{1}{\alpha}, \text{ for almost every } x\in\mathbb{R}. \tag{3}$$

Tiling ${\mathbb R}$ with two lattices: A lower bound for the length

Suppose $f : \mathbb{R} \to \mathbb{R}^{\geq 0}$ is measurable and tiles with both $\Lambda_1 = \mathbb{Z}$ and with $\Lambda_2 = \alpha \mathbb{Z}$, where $\alpha \in (0, 1)$:

$$\sum_{n\in\mathbb{Z}}f(x-n)=1,\quad \sum_{n\in\mathbb{Z}}f(x-n\alpha)=\frac{1}{\alpha}, \text{ for almost every } x\in\mathbb{R}. \tag{3}$$

Then

$$|\mathrm{supp} f| \ge \left\lceil \frac{1}{\alpha} \right\rceil \alpha \ge 2\alpha.$$
 (4)

(K. & Papageorgiou, 2022)

Tiling ${\mathbb R}$ with two lattices: A lower bound for the length

Suppose $f : \mathbb{R} \to \mathbb{R}^{\geq 0}$ is measurable and tiles with both $\Lambda_1 = \mathbb{Z}$ and with $\Lambda_2 = \alpha \mathbb{Z}$, where $\alpha \in (0, 1)$:

$$\sum_{n\in\mathbb{Z}}f(x-n)=1,\quad \sum_{n\in\mathbb{Z}}f(x-n\alpha)=\frac{1}{\alpha}, \text{ for almost every } x\in\mathbb{R}. \tag{3}$$

Then

$$|\mathrm{supp} f| \ge \left\lceil \frac{1}{\alpha} \right\rceil \alpha \ge 2\alpha.$$
 (4)

(K. & Papageorgiou, 2022)

• When $\alpha = 1 - \epsilon$: convolution $\mathbf{1}_{[0,1]} * \mathbf{1}_{[0,\alpha]}$ is almost optimal.

• When $\alpha = \frac{1}{2} + \epsilon$ there is a big gap $1 + 2\epsilon$ to $3/2 + \epsilon$.

QUESTION

What is the smallest possible length of supp *f* which tiles with \mathbb{Z} and $\alpha \mathbb{Z}$?

Tiling \mathbb{R} with two lattices: Etkind and LeV, 2022

 $\sum_{k\in\mathbb{Z}} f(x-k\alpha) = p$, $\sum_{k\in\mathbb{Z}} f(x-k\beta) = q$. What about the measure of supp f?

α/β ∉ Q For all p, q ∈ C there is measurable f with |supp f| ≤ α + β If p/q ∉ Q⁺ then for any f must have |supp f| ≥ α + β. If f≥ 0 or f∈ L¹ or f has bounded support then p/q = β/α, |suppf| ≥ α + β. If p/q ∈ Q⁺, gcd(p, q) = 1 we can have

$$|\mathrm{supp} f| < \alpha + \beta - \min\left\{\frac{\alpha}{q}, \frac{\beta}{p}\right\} + \epsilon$$

and must have

$$|\mathrm{supp}\,f| > \alpha + \beta - \min\left\{rac{lpha}{q}, rac{eta}{p}
ight\}$$

▶ $\alpha/\beta \in \mathbb{Q}^+$ and simplifying to $\alpha = n, \beta = m$, with gcd(n, m) = 1.

Then p/q = m/n and the least possible |supp f| is n + m - 1.

SUBGROUPS IN A FINITE ABELIAN GROUP: AIVAZIDIS, LOUKAKI AND SAMBALE, 2023

If A₁,..., A_t are complemented isomorphic subgroups of G and the smallest prime divisor of |A₁| is ≥ t then they have a common complement in G.

 $A \subseteq G$ is *complemented* if some FD of A in G is a subgroup of G (called *complement* of A).

SUBGROUPS IN A FINITE ABELIAN GROUP: AIVAZIDIS, LOUKAKI AND SAMBALE, 2023

If A₁,..., A_t are complemented isomorphic subgroups of G and the smallest prime divisor of |A₁| is ≥ t then they have a common complement in G.

 $A \subseteq G$ is *complemented* if some FD of A in G is a subgroup of G (called *complement* of A).

If A, B, C ⊆ G are cyclic groups of same order then they have a commond FD in G if and only if the following <u>does not hold</u>:
 |A| = |B| = |C| is even and the product of their 2-Sylow subgroups A₂B₂C₂ satisifies

$$A_2B_2C_2/I = A_2/I \times B_2/I = A_2/I \times C_2/I = B_2/I \times C_2/I$$

where $I = A_2 \cap B_2 \cap C_2$.

DIAMETER: LATTICES WITH MANY RELATIONS

▶ Main observation: $\Lambda_1, \ldots, \Lambda_N \supseteq \Lambda$ and *D* is a FD of Λ then

 $f = \mathbf{1}_D$ tiles with all Λ_i .

DIAMETER: LATTICES WITH MANY RELATIONS

▶ Main observation: $\Lambda_1, \ldots, \Lambda_N \supseteq \Lambda$ and *D* is a FD of Λ then

 $f = \mathbf{1}_D$ tiles with all Λ_i .

• Let G be a subgroup of \mathbb{Z}_p^d . Define the lattice

$$\Lambda_G = (p\mathbb{Z})^d + G,$$

which contains $\Lambda = (p\mathbb{Z})^2$ with FD

 $[0, p)^d$ of diameter \sqrt{dp} .

DIAMETER: LATTICES WITH MANY RELATIONS

▶ Main observation: $\Lambda_1, \ldots, \Lambda_N \supseteq \Lambda$ and *D* is a FD of Λ then

 $f = \mathbf{1}_D$ tiles with all Λ_i .

• Let G be a subgroup of \mathbb{Z}_p^d . Define the lattice

$$\Lambda_G = (p\mathbb{Z})^d + G,$$

which contains $\Lambda = (p\mathbb{Z})^2$ with FD

 $[0, p)^d$ of diameter \sqrt{dp} .

There are

$$rac{p^d-1}{p-1}\sim p^{d-1}=:N$$

different cyclic subgroups G of \mathbb{Z}_p^d .

BACK TO THE DIAMETER: AN EXAMPLE, CONTINUED

• We find $\operatorname{vol} \Lambda_G$ by its density

$$\operatorname{vol} \Lambda_G = rac{\operatorname{vol} (p\mathbb{Z})^d}{|G|} = rac{p^d}{p} = p^{d-1} = N.$$

BACK TO THE DIAMETER: AN EXAMPLE, CONTINUED

• We find $\operatorname{vol} \Lambda_G$ by its density

$$\operatorname{vol} \Lambda_G = rac{\operatorname{vol} (p\mathbb{Z})^d}{|G|} = rac{p^d}{\rho} = \rho^{d-1} = N.$$

• Shrink everything by $N^{-1/d}$ so that

$$\Lambda'_G = N^{-1/d} \Lambda_G$$

has volume 1.

BACK TO THE DIAMETER: AN EXAMPLE, CONTINUED

• We find $\operatorname{vol} \Lambda_G$ by its density

$$\operatorname{vol} \Lambda_G = rac{\operatorname{vol} (p\mathbb{Z})^d}{|G|} = rac{p^d}{p} = p^{d-1} = N.$$

• Shrink everything by $N^{-1/d}$ so that

$$\Lambda'_G = N^{-1/d} \Lambda_G$$

has volume 1.

▶ $f(x) := \mathbf{1}_{[0,p)^d}(N^{1/d}x)$ is a common tile for the Λ'_G of diameter

$$\sqrt{d}p \cdot N^{-1/d} = \sqrt{d}N^{\frac{1}{d-1}}N^{-\frac{1}{d}} = \sqrt{d}N^{\frac{1}{d(d-1)}}$$

(K. & Papageorgiou, 2022)

UNCONDITIONAL LOWER BOUNDS FOR THE DIAMETER?

DIAMETER: THE CASE d = 1.

• Previous construction gives nothing in dimension d = 1.

THEOREM

We can find N lattices $\Lambda_j \subseteq \mathbb{R}$ of with $\operatorname{vol} \Lambda_j \sim 1$ and a function f with $\int f > 0$ and supported in an interval of length

N log^{0.086...} N

which tiles with all Λ_j .

For any $\epsilon > 0$ any such function f must have

diam supp $f \gtrsim_{\epsilon} N^{1-\epsilon}$.

(K. & Papageorgiou, 2022)

$$\Lambda_j = \lambda_j \mathbb{Z} = rac{1}{N+j} \mathbb{Z}, \quad j = 1, 2, \dots, N.$$

Then

Define

$$\Lambda_j^* = (N+j)\mathbb{Z},$$

with union $U = \bigcup_{j=1}^{N} (N+j)\mathbb{Z}$. • f tiles with all $\Lambda_j \iff \widehat{f}$ vanishes on $U \setminus \{0\}$.

 $\Lambda_j = \lambda_j \mathbb{Z} = rac{1}{N+j} \mathbb{Z}, \quad j = 1, 2, \dots, N.$

Then

Define

$$\Lambda_j^* = (N+j)\mathbb{Z},$$

with union $U = \bigcup_{j=1}^{N} (N+j)\mathbb{Z}$.

- f tiles with all $\Lambda_j \iff \hat{f}$ vanishes on $U \setminus \{0\}$.
- ► *Erdős, 1935*: The integers divisible by one of N + 1, N + 2, ..., 2N have density $\rightarrow 0$ as $N \rightarrow \infty$.

$$\Lambda_j = \lambda_j \mathbb{Z} = rac{1}{N+j} \mathbb{Z}, \quad j = 1, 2, \dots, N.$$

Then

Define

$$\Lambda_j^* = (N+j)\mathbb{Z},$$

with union $U = \bigcup_{j=1}^{N} (N+j)\mathbb{Z}$.

- f tiles with all $\Lambda_j \iff \hat{f}$ vanishes on $U \setminus \{0\}$.
- ► *Erdős, 1935*: The integers divisible by one of N + 1, N + 2, ..., 2N have density $\rightarrow 0$ as $N \rightarrow \infty$.
- Tenenbaum, 1980: Their density is

$$O\left(\frac{1}{\log^{0.086\cdots}N}\right)$$

• So dens
$$U = O\left(\frac{1}{\log^{0.086\cdots} N}\right)$$
.

• So dens
$$U = O\left(\frac{1}{\log^{0.086\cdots} N}\right)$$
.

▶ Beurling: U separated, dens $U < \rho \implies$

$$\exists f \colon [-
ho,
ho] o \mathbb{C} \text{ with } \widehat{f} \equiv 0 \text{ on } U, \ \int f = 1.$$

• So dens
$$U = O\left(\frac{1}{\log^{0.086\cdots} N}\right)$$
.

▶ Beurling: U separated, dens $U < \rho \implies$

$$\exists f \colon [-
ho,
ho] o \mathbb{C} \text{ with } \widehat{f} \equiv 0 \text{ on } U, \ \int f = 1.$$

$$f'(x) = f(x/N), \quad ext{diam supp } f' = o(N),$$
 $\Lambda'_j = N \Lambda_j = rac{N}{N+j} \mathbb{Z} ext{ have vol } \sim 1.$

DIAMETER: THE CASE d = 1: LOWER BOUNDS

• *f* tiles with $\Lambda_1, \ldots, \Lambda_N$, dens $\Lambda_j \sim 1$, \Longrightarrow

 \widehat{f} vanishes on $\Lambda_1^*, \ldots, \Lambda_N^*$.

DIAMETER: THE CASE d = 1: LOWER BOUNDS

► *f* tiles with
$$\Lambda_1, \ldots, \Lambda_N$$
, dens $\Lambda_j \sim 1$, \implies

 \widehat{f} vanishes on $\Lambda_1^*, \ldots, \Lambda_N^*$.

► Gilboa and Pinchasi, 2014: The union of n arithmetic progressions of length n (of different step) contains, for any e > 0,

 \gtrsim $n^{2-\epsilon}$ points.

DIAMETER: THE CASE d = 1: LOWER BOUNDS

► *f* tiles with
$$\Lambda_1, \ldots, \Lambda_N$$
, dens $\Lambda_j \sim 1$, \implies

 \widehat{f} vanishes on $\Lambda_1^*, \ldots, \Lambda_N^*$.

► Gilboa and Pinchasi, 2014: The union of n arithmetic progressions of length n (of different step) contains, for any e > 0,

 $\gtrsim n^{2-\epsilon}$ points.

▶ Jensen's formula: Since \hat{f} has $\gtrsim N^{2-\epsilon}$ roots in $[-N, N] \implies$

diam supp $f \gtrsim N^{1-\epsilon}$.

Thank you for your attention!