Common Fundamental Domains

Mihalis Kolountzakis

University of Crete

2024 IBS-DIMAG Workshop on Combinatorics and Geometric Measure Theory Daejeon, Korea

July 16, 2024

▶ Steinhaus (1950s): Are there $A, B \subseteq \mathbb{R}^2$ such that

```
| \tau A \cap B | = 1, for every rigid motion \tau?
```
Are there two subsets of the plane which, no matter how moved, always intersect at exactly one point?

▶ Steinhaus (1950s): Are there $A, B \subseteq \mathbb{R}^2$ such that

```
| \tau A \cap B | = 1, for every rigid motion \tau?
```
Are there two subsets of the plane which, no matter how moved, always intersect at exactly one point?

Yes.

▶ Equivalent:

$$
\sum_{b \in B} \mathbf{1}_{\rho A}(x - b) = 1, \text{ for all rotations } \rho \text{ and for all } x \in \mathbb{R}^2.
$$

▶ Equivalent:

$$
\sum_{b \in B} \mathbf{1}_{\rho A}(x - b) = 1, \text{ for all rotations } \rho \text{ and for all } x \in \mathbb{R}^2.
$$

▶ In tiling language:

$$
\rho A \oplus B = \mathbb{R}^2
$$
, for all rotations ρ .

Every rotation of *A* tiles (partitions) the plane when translated at the locations *B*.

FIXING $B = \mathbb{Z}^2$: The LATTICE STEINHAUS QUESTION

Equivalent: A is a fundamental domain of all $\rho \mathbb{Z}^2$. Or, *A* tiles the plane by translations at any $\rho \mathbb{Z}^2$.

▶ Major result: Jackson and Mauldin, 2002: Yes. But no measurability.

▶ **Major result:** Jackson and Mauldin, 2002: Yes. But no measurability.

▶ Can *A* be Lebesgue measurable? We interpret tiling almost everywhere.

- ▶ **Major result:** Jackson and Mauldin, 2002: Yes. But no measurability.
- ▶ Can *A* be Lebesgue measurable? We interpret tiling almost everywhere.
- \blacktriangleright Results (in the negative direction) by Sierpiński (1958), Croft (1982), Beck (1989), K. (1996):

"Best" so far: (K. & Wolff (1999))

If such a measurable *A* exists then it must be large at infinity:

$$
\int_A |x|^{\frac{46}{27}+\epsilon} dx = \infty.
$$

▶ **Major result:** Jackson and Mauldin, 2002: Yes. But no measurability.

▶ Can *A* be Lebesgue measurable? We interpret tiling almost everywhere.

 \blacktriangleright Results (in the negative direction) by Sierpiński (1958), Croft (1982), Beck (1989), K. (1996):

"Best" so far: (K. & Wolff (1999))

If such a measurable *A* exists then it must be large at infinity:

$$
\int_A |x|^{\frac{46}{27}+\epsilon} dx = \infty.
$$

▶ In higher dimension:

K. & Wolff (1999), K. & Papadimitrakis (2002):

=*⇒* No measurable Steinhaus sets exist for Z *d* , *d ≥* 3.

No Jackson - Mauldin analogue for *d ≥* 3.

The zeros of the Fourier Transform

▶ For *A* to have the Steinhaus property it is equivalent

that $\widehat{1_A}$ must vanish on all circles through lattice points.

The zeros of the Fourier Transform

▶ For *A* to have the Steinhaus property it is equivalent

that $\mathbf{1}_A$ must vanish on all circles through lattice points.

 \triangleright Too many zeros imply strong decay of $\widehat{1_A}$ near infinity.

This implies (uncertainty principle) slow decay of **1***^A* near infinity.

Lattice Steinhaus for finitely many lattices

▶ Given lattices $Λ_1, ..., Λ_n ⊆ ℝ^d$ all of volume 1 can we find measurable *A* which tiles with all Λ*j*?

Lattice Steinhaus for finitely many lattices

▶ Given lattices $Λ_1, ..., Λ_n ⊆ ℝ^d$ all of volume 1 can we find measurable *A* which tiles with all Λ*j*?

Generically yes!

▶ If the sum $\Lambda_1^* + \cdots + \Lambda_n^*$ is direct then Kronecker-type density theorems allow us to rearrange a fundamental domain of one lattice to accomodate the others.

Lattice Steinhaus for finitely many lattices

QUESTION

Is there a *bounded* common tile for $Λ_1, ..., Λ_N$?

AN APPLICATION IN GABOR ANALYSIS

 \blacktriangleright If *K*, *L* are two lattices in \mathbb{R}^d with

 $vol K \cdot vol L = 1$,

can we find $g \in L^2(\mathbb{R}^d)$, such that the (\mathcal{K}, L) time-frequency translates

$$
g(x-k)e^{2\pi i\ell\cdot x}, \quad (k\in K, \ell\in L)
$$

form an orthogonal basis of $L^2(\mathbb{R}^d)$?

AN APPLICATION IN GABOR ANALYSIS

 \blacktriangleright If *K*, *L* are two lattices in \mathbb{R}^d with

 $vol K \cdot vol L = 1$,

can we find $g \in L^2(\mathbb{R}^d)$, such that the (\mathcal{K}, L) time-frequency translates

$$
g(x-k)e^{2\pi i\ell\cdot x}, \quad (k\in K, \ell\in L)
$$

form an orthogonal basis of $L^2(\mathbb{R}^d)$?

- \blacktriangleright Han and Wang (2000): $\mathsf{Since}\ \mathrm{vol}\,(\mathsf{L}^*)=\mathrm{vol}\,(\mathsf{K})$ let $\pmb{g}=\mathbf{1}_E$ where *E* is a **common tile** for *K, L ∗* .
- \blacktriangleright Then *L* forms an orthogonal basis for $L^2(E)$.

▶ Space partitioned in *K*-copies of *E* and on each copy *L* is an orthogonal basis.

MULTI-TILING FUNCTIONS

▶ A function *f* tiles with the set of translates Λ if

$$
\sum_{\lambda \in \Lambda} f(x - \lambda) = \text{const.} \quad \text{a.e. } x \in \mathbb{R}^d.
$$

MULTI-TILING FUNCTIONS

▶ A function *f* tiles with the set of translates Λ if

$$
\sum_{\lambda \in \Lambda} f(x - \lambda) = \text{const.} \quad \text{a.e. } x \in \mathbb{R}^d.
$$

▶ We can find a common tiling function *f* for any set of lattices

$$
\Lambda_1,\ldots,\Lambda_N\subseteq\mathbb{R}^d.
$$

Just take (the D_i are fundamental domains of Λ_i)

$$
f = \mathbf{1}_{D_1} \ast \cdots \ast \mathbf{1}_{D_N}.
$$

MULTI-TILING FUNCTIONS

▶ A function *f* tiles with the set of translates Λ if

$$
\sum_{\lambda \in \Lambda} f(x - \lambda) = \text{const.} \quad \text{a.e. } x \in \mathbb{R}^d.
$$

▶ We can find a common tiling function *f* for any set of lattices

$$
\Lambda_1,\ldots,\Lambda_N\subseteq\mathbb{R}^d.
$$

Just take (the D_i are fundamental domains of Λ_i)

$$
f = \mathbf{1}_{D_1} \ast \cdots \ast \mathbf{1}_{D_N}.
$$

► For such an *f* if $vol \Lambda_i \gtrsim 1$ then

diam supp $f \geq N$.

MULTI-TILING FUNCTIONS: DIAMETER LOWER BOUNDS

▶ (K. and Wolff, 1997): If $f \in L^1(\mathbb{R}^d)$, with $\int f \neq 0$, tiles \mathbb{R}^d with $\Lambda_1,\ldots,\Lambda_N$, and

 $\Lambda_i \cap \Lambda_j = \{0\}$ and $\mathrm{vol}\,\Lambda_j \sim 1$

then

diam supp $f \gtrsim N^{1/d}$.

MULTI-TILING FUNCTIONS: DIAMETER LOWER BOUNDS

▶ (K. and Wolff, 1997): If $f \in L^1(\mathbb{R}^d)$, with $\int f \neq 0$, tiles \mathbb{R}^d with $\Lambda_1,\ldots,\Lambda_N$, and

 $\Lambda_i \cap \Lambda_j = \{0\}$ and vol $\Lambda_j \sim 1$

then

diam supp $f \gtrsim N^{1/d}$.

QUESTION

What is the smallest diam supp *f* ?

We know

 $N^{1/d} \lesssim \text{diam} \operatorname{supp} f \lesssim N$.

at least when $\Lambda_i \cap \Lambda_j = \{0\}$.

Multi-tiling functions: a case of large diameter

Example 7 Take
$$
\alpha_1, ..., \alpha_N \in (\frac{1}{2}, 1)
$$
 to be Q-linearily independent and
\n
$$
\Lambda_j = \mathbb{Z}(\alpha_j, 0) + \mathbb{Z}(0, \alpha_j^{-1}), \quad \Lambda_j^* = \mathbb{Z}(\alpha_j^{-1}, 0) + \mathbb{Z}(0, \alpha_j).
$$

Multi-tiling functions: a case of large diameter

► Take
$$
\alpha_1, ..., \alpha_N \in (\frac{1}{2}, 1)
$$
 to be Q-linearly independent and
\n
$$
\Lambda_j = \mathbb{Z}(\alpha_j, 0) + \mathbb{Z}(0, \alpha_j^{-1}), \quad \Lambda_j^* = \mathbb{Z}(\alpha_j^{-1}, 0) + \mathbb{Z}(0, \alpha_j).
$$

\n- $$
\blacktriangleright
$$
 f tiles with all $\Lambda_j \implies \hat{f} \equiv 0$ on Λ_j^* .
\n- \hat{f} has zeros of density $\geq N$ along the axes. So
\n- $\text{diam} \operatorname{supp} f \geq N$. (K. & Papageorgiou, 2022)
\n

QUESTION

Is there any case of "generic" lattices with a common tile *f* s.t.

diam supp $f = o(N)$?

Multi-tiling functions: the volume of the support

$$
\blacktriangleright \text{ If } f = \mathbf{1}_{D_1} \ast \cdots \ast \mathbf{1}_{D_N} \text{ or (more generally)}
$$

$$
f = f_1 * \cdots * f_N, \quad \text{where } f_j \ge 0 \text{ tiles with } \Lambda_j \tag{1}
$$

then

$$
\operatorname{supp} f = \operatorname{supp} f_1 + \cdots + \operatorname{supp} f_N
$$

and (Brunn - Minkowski inequality)

$$
|\text{supp } f| \ge \left(|\text{supp } f_1|^{1/d} + \cdots + |\text{supp } f_N|^{1/d}\right)^d \gtrsim N^d.
$$

Multi-tiling functions: the volume of the support

$$
\blacktriangleright \text{ If } f = \mathbf{1}_{D_1} \ast \cdots \ast \mathbf{1}_{D_N} \text{ or (more generally)}
$$

$$
f = f_1 * \cdots * f_N, \quad \text{where } f_j \ge 0 \text{ tiles with } \Lambda_j \tag{1}
$$

then

$$
\operatorname{supp} f = \operatorname{supp} f_1 + \cdots + \operatorname{supp} f_N
$$

and (Brunn - Minkowski inequality)

$$
|\text{supp } f| \ge \left(|\text{supp } f_1|^{1/d} + \cdots + |\text{supp } f_N|^{1/d}\right)^d \gtrsim N^d.
$$

QUESTION

What if we drop nonnegativity from (1) ?

What if *f* is *any* common tile of the Λ*^j* , not given by (1)?

Multi-tiling sets: Giving up measurability

▶ If G_1, \ldots, G_N are subgroups of G it is always enough to find a common fundamental domain (a common tile) of the *G^j* in

Multi-tiling sets: Giving up measurability

 \blacktriangleright (K. 1997) If the lattices $\Lambda_1,\ldots,\Lambda_N$ in \mathbb{R}^d have (a) *the same volume* and (b) a *direct sum* then they have a bounded common fundamental domain.

MULTI-TILING SETS: GIVING UP MEASURABILITY

 \blacktriangleright (K. 1997) If the lattices $\Lambda_1,\ldots,\Lambda_N$ in \mathbb{R}^d have (a) *the same volume* and (b) a *direct sum* then they have a bounded common fundamental domain.

▶ A consequence of the "marriage" theorem:

THEOREM

If $vol \Lambda_i = vol \Lambda_i$ *then there is a bijection* $f_{ii}: \Lambda_i \to \Lambda_i$ *with*

 $|x - f(x)|$ *bounded.*

▶ Suppose

$$
\Lambda_1=\mathbb{Z}^d \text{ and } \Lambda_2=\alpha\mathbb{Z}^d \text{ (}\alpha \text{ irrational, } \alpha>1\text{).}
$$

Then Λ_1, Λ_2 have no bounded common fundamental domain.

No measurability assumed!

PROOF FOR $d = 1$

► If *F* is a bounded FD in $G = \Lambda_1 + \Lambda_2 = \{m + n\alpha : m, n \in \mathbb{Z}\}$:

$$
F=m_i-n_i\alpha : i=1,2,\ldots \subseteq [-M,M].
$$

PROOF FOR $d = 1$

► If *F* is a bounded FD in $G = \Lambda_1 + \Lambda_2 = \{m + n\alpha : m, n \in \mathbb{Z}\}\$:

$$
F=m_i-n_i\alpha : i=1,2,\ldots \subseteq [-M,M].
$$

 \blacktriangleright All m_i , n_i must be unique and $\mathbb{Z} = \{m_i\} = \{n_i\}.$ Renumbering: $F = \{m - n_m\alpha : m \in \mathbb{Z}\}.$

PROOF FOR $d = 1$

▶ If *F* is a bounded FD in $G = Λ_1 + Λ_2 = {m + nα : m, n ∈ ℤ}$:

$$
F=m_i-n_i\alpha : i=1,2,\ldots \subseteq [-M,M].
$$

► All
$$
m_i
$$
, n_i must be unique and $\mathbb{Z} = \{m_i\} = \{n_i\}$.
Renumbering: $F = \{m - n_m\alpha : m \in \mathbb{Z}\}$.

▶ Restricting *−R ≤ m ≤ R* we get

$$
|m-n_m\alpha|\leq M.
$$

or

$$
-\frac{R+M}{\alpha}\leq n_m\leq \frac{R+M}{\alpha}.
$$

▶ *∼* 2*R* values of *m* correspond to only *∼* 2 $\frac{2}{\alpha}$ *R* values of n_m Contradiction, as all *n^m* must be different (K. & Papageorgiou, 2022).

Tiling finite abelian groups with a function

•
$$
G_1
$$
, G_2 subgroups of G , $f: G \to \mathbb{R}^{\geq 0}$ s.t.

$$
\forall x \in G: \quad \sum_{g_1 \in G_1} f(x - g_1) = |G_1|, \quad \sum_{g_2 \in G_2} f(x - g_2) = |G_2|.
$$

For example $f(x) \equiv 1$.

Tiling finite abelian groups with a function

•
$$
G_1, G_2
$$
 subgroups of $G, f: G \to \mathbb{R}^{\geq 0}$ s.t.

$$
\forall x \in G: \quad \sum_{g_1 \in G_1} f(x - g_1) = |G_1|, \quad \sum_{g_2 \in G_2} f(x - g_2) = |G_2|.
$$

For example $f(x) \equiv 1$.

QUESTION

How small can *|*supp *f|* be?

▶ Write

$$
\mathcal{S}^G_{G_1,G_2} = \text{min } \{ |\text{supp } f| : \,\, f \ast \mathbf{1}_{G_1} \equiv |G_1| \mathbf{1}_G, \ \ \, f \ast \mathbf{1}_{G_2} \equiv |G_2| \mathbf{1}_G \}.
$$

► Always
$$
S_{G_1, G_2}^G \ge \max\{[G: G_1], [G: G_2]\}.
$$

REDUCTION TO PRODUCT GROUPS

▶ If $\Gamma = G/(G_1 \cap G_2)$, $\Gamma_i = G_i/(G_1 \cap G_2)$ then

$$
S_{G_1,G_2}^G = S_{\Gamma_1,\Gamma_2}^T.
$$
 (2)

▶ Can assume: $G = G_1 \times G_2$.

THE PROBLEM IN MATRIX FORM

▶ Group structure irrelevant.

Find $m \times n$ matrix A with

row sums equal to n, column sums equal to m.

 \blacktriangleright Minimize the support. Call $S(m, n)$ the minumum.

THE PROBLEM IN MATRIX FORM

Group structure irrelevant.

Find *m × n* matrix *A* with

row sums equal to n, column sums equal to m.

- \blacktriangleright Minimize the support. Call $S(m, n)$ the minumum.
- ▶ Statisticians call these *copulas* and use them a lot. A generalization of doubly stochastic matrices.

THE CASE *m* DIVIDES *n*

▶ Smallest possible support, since we must have *≥* 1 element/column.

 $S(km, m) = km$.

THE CASE $n = km + 1$

▶ Also smallest possible support, since $A_{ii} \leq m$ implies

at least $k+1$ terms per row,

so

$$
S(km+1, m) = (k+1)m = m + (km+1) - 1.
$$

(K. & Papageorgiou, 2022)

THE GENERAL CASE: LOUKAKI, 2022, ETKIND AND LEV, 2022

THEOREM

 $S(m, n) = m + n - \gcd(m, n)$

TILING R WITH TWO LATTICES: A LOWER BOUND FOR THE LENGTH

▶ Suppose $f\colon\mathbb{R}\to\mathbb{R}^{\geq 0}$ is measurable and tiles with both $\Lambda_1=\mathbb{Z}$ and with $\Lambda_2 = \alpha \mathbb{Z}$, where $\alpha \in (0,1)$:

$$
\sum_{n\in\mathbb{Z}} f(x-n) = 1, \quad \sum_{n\in\mathbb{Z}} f(x-n\alpha) = \frac{1}{\alpha}, \text{ for almost every } x \in \mathbb{R}.
$$
 (3)

TILING R WITH TWO LATTICES: A LOWER BOUND FOR THE LENGTH

▶ Suppose $f\colon\mathbb{R}\to\mathbb{R}^{\geq 0}$ is measurable and tiles with both $\Lambda_1=\mathbb{Z}$ and with $\Lambda_2 = \alpha \mathbb{Z}$, where $\alpha \in (0,1)$:

$$
\sum_{n\in\mathbb{Z}} f(x-n) = 1, \quad \sum_{n\in\mathbb{Z}} f(x-n\alpha) = \frac{1}{\alpha}, \text{ for almost every } x \in \mathbb{R}.
$$
 (3)

Then

$$
|\text{supp}\,\mathbf{f}| \ge \left\lceil \frac{1}{\alpha} \right\rceil \alpha \ge 2\alpha. \tag{4}
$$

(K. & Papageorgiou, 2022)

TILING R WITH TWO LATTICES: A LOWER BOUND FOR THE LENGTH

▶ Suppose $f\colon\mathbb{R}\to\mathbb{R}^{\geq 0}$ is measurable and tiles with both $\Lambda_1=\mathbb{Z}$ and with $\Lambda_2 = \alpha \mathbb{Z}$, where $\alpha \in (0,1)$:

$$
\sum_{n\in\mathbb{Z}} f(x-n) = 1, \quad \sum_{n\in\mathbb{Z}} f(x-n\alpha) = \frac{1}{\alpha}, \quad \text{for almost every } x \in \mathbb{R}.
$$
 (3)

Then

$$
|\text{supp}\,\mathbf{f}| \ge \left\lceil \frac{1}{\alpha} \right\rceil \alpha \ge 2\alpha. \tag{4}
$$

(K. & Papageorgiou, 2022)

▶ When *α* = 1 *− ϵ*: convolution **1**[0*,*1] *∗* **1**[0*,α*] is almost optimal.

▶ When $\alpha = \frac{1}{2} + \epsilon$ there is a big gap $1 + 2\epsilon$ to 3/2 + ϵ .

QUESTION

What is the smallest possible length of supp *f* which tiles with $\mathbb Z$ and $\alpha \mathbb Z$?

TILING R WITH TWO LATTICES: ETKIND AND LEV, 2022

 $\sum_{k \in \mathbb{Z}} f(x - k\alpha) = p$, $\sum_{k \in \mathbb{Z}} f(x - k\beta) = q$. What about the measure of supp *f*?

\triangleright *α/β* \notin **Q** ▶ For all $p, q \in \mathbb{C}$ there is measurable *f* with $|\text{supp } f| \leq \alpha + \beta$ ▶ If $p/q \notin \mathbb{Q}^+$ then for any *f* must have $|\text{supp } f| > \alpha + \beta$. ▶ If $f \ge 0$ or $f \in L^1$ or f has bounded support then $p/q = \beta/\alpha$, $|\text{supp}f| \ge \alpha + \beta$. ▶ If $p/q \in \mathbb{Q}^+$, gcd $(p, q) = 1$ we can have

$$
|\mathrm{supp}\, f| < \alpha+\beta-\min\left\{\frac{\alpha}{q},\frac{\beta}{p}\right\}+\epsilon
$$

and must have

$$
|\mathrm{supp}\, f| > \alpha + \beta - \min\left\{\frac{\alpha}{q}, \frac{\beta}{p}\right\}
$$

 $\rho \alpha/\beta \in \mathbb{Q}^+$ and simplifying to $\alpha = n, \beta = m$, with gcd $(n, m) = 1$.

Then $p/q = m/n$ and the least possible $|\text{supp } f|$ is $n + m - 1$.

SUBGROUPS IN A FINITE ABELIAN GROUP: Aivazidis, Loukaki and Sambale, 2023

 \blacktriangleright If A_1, \ldots, A_t are *complemented* isomorphic subgroups of G and the smallest prime divisor of $|A_1|$ is $\geq t$ then they have a common complement in *G*.

A ⊆ G is *complemented* if some FD of *A* in *G* is a subgroup of *G* (called *complement* of *A*).

SUBGROUPS IN A FINITE ABELIAN GROUP: Aivazidis, Loukaki and Sambale, 2023

 \blacktriangleright If A_1, \ldots, A_t are *complemented* isomorphic subgroups of G and the smallest prime divisor of $|A_1|$ is $\geq t$ then they have a common complement in *G*.

A ⊆ G is *complemented* if some FD of *A* in *G* is a subgroup of *G* (called *complement* of *A*).

▶ If *A, B, C ⊆ G* are cyclic groups of same order then they have a commond FD in *G* if and only if the following does not hold: $|A| = |B| = |C|$ is even and the product of their 2-Sylow subgroups $A_2B_2C_2$ satisifies

$$
A_2B_2C_2/I = A_2/I \times B_2/I = A_2/I \times C_2/I = B_2/I \times C_2/I
$$

where $I = A_2 \cap B_2 \cap C_2$.

DIAMETER: LATTICES WITH MANY RELATIONS

▶ **Main observation:** Λ1*, . . . ,* Λ*^N ⊇* Λ and *D* is a FD of Λ then

 $f = \mathbf{1}_D$ tiles with all Λ_i .

DIAMETER: LATTICES WITH MANY RELATIONS

▶ **Main observation:** Λ1*, . . . ,* Λ*^N ⊇* Λ and *D* is a FD of Λ then

 $f = \mathbf{1}_D$ tiles with all Λ_i .

 \blacktriangleright Let *G* be a subgroup of \mathbb{Z}_p^d . Define the lattice

$$
\Lambda_G=(p\mathbb{Z})^d+G,
$$

which contains $\Lambda=(\rho\mathbb{Z})^2$ with FD

 $[0, p)^d$ of diameter $\sqrt{d}p$.

DIAMETER: LATTICES WITH MANY RELATIONS

▶ **Main observation:** Λ1*, . . . ,* Λ*^N ⊇* Λ and *D* is a FD of Λ then

 $f = \mathbf{1}_D$ tiles with all Λ_i .

 \blacktriangleright Let *G* be a subgroup of \mathbb{Z}_p^d . Define the lattice

$$
\Lambda_G=(p\mathbb{Z})^d+G,
$$

which contains $\Lambda=(\rho\mathbb{Z})^2$ with FD

 $[0, p)^d$ of diameter $\sqrt{d}p$.

▶ There are

$$
\frac{p^d-1}{p-1}\sim p^{d-1}=:N
$$

different cyclic subgroups G of \mathbb{Z}_p^d .

BACK TO THE DIAMETER: AN EXAMPLE, CONTINUED

 \triangleright We find vol Λ_G by its density

$$
\operatorname{vol}\Lambda_G=\frac{\operatorname{vol}\left(p\mathbb{Z}\right)^d}{|G|}=\frac{p^d}{p}=p^{d-1}=\mathsf{N}.
$$

BACK TO THE DIAMETER: AN EXAMPLE, CONTINUED

 \triangleright We find vol Λ_G by its density

$$
\operatorname{vol}\Lambda_G=\frac{\operatorname{vol}\left(p\mathbb{Z}\right)^d}{|G|}=\frac{p^d}{p}=p^{d-1}=\mathsf{N}.
$$

▶ Shrink everything by *N −*1*/d* so that

$$
\Lambda'_G = N^{-1/d} \Lambda_G
$$

has volume 1.

BACK TO THE DIAMETER: AN EXAMPLE, CONTINUED

▶ We find vol Λ*^G* by its density

$$
\operatorname{vol}\Lambda_G=\frac{\operatorname{vol}\left(p\mathbb{Z}\right)^d}{|G|}=\frac{p^d}{p}=p^{d-1}=\mathsf{N}.
$$

▶ Shrink everything by *N −*1*/d* so that

$$
\Lambda'_G = N^{-1/d} \Lambda_G
$$

has volume 1. \blacktriangleright $f(x) := \mathbf{1}_{[0,p)^d}(N^{1/d}x)$ is a common tile for the Λ'_G of diameter *√ dp · N [−]*1*/^d* = *√* $\overline{d}N^{\frac{1}{d-1}}N^{-\frac{1}{d}} =$ *√ d N* 1 *d*(*d−*1) *.*

(K. & Papageorgiou, 2022)

Unconditional lower bounds for the diameter?

$DIAMETER: THE CASE$ $d = 1$.

 \blacktriangleright Previous construction gives nothing in dimension $d = 1$.

THEOREM

We can find N lattices $\Lambda_j \subseteq \mathbb{R}$ *of with* $\text{vol } \Lambda_j \sim 1$ *and a function f with* $\int f > 0$ *and supported in an interval of length*

> *N* $\sqrt{\log 0.086 \cdots N}$

which tiles with all Λ*^j .*

For any $\epsilon > 0$ *any* such function f must have

diam supp $f \gtrsim_{\epsilon} N^{1-\epsilon}$.

(K. & Papageorgiou, 2022)

$$
\Lambda_j = \lambda_j \mathbb{Z} = \frac{1}{N+j}\mathbb{Z}, \quad j = 1, 2, \dots, N.
$$

Then

 \blacktriangleright Define

$$
\Lambda_j^*=(N+j)\mathbb{Z},
$$

with union $U = \bigcup_{j=1}^N (N+j)\mathbb{Z}$. ▶ *f* tiles with all Λ_i \iff \hat{f} vanishes on $U \setminus \{0\}$.

Define

$$
\Lambda_j = \lambda_j \mathbb{Z} = \frac{1}{N+j} \mathbb{Z}, \quad j = 1, 2, \dots, N.
$$

Then

$$
\Lambda_j^*=(N+j)\mathbb{Z},
$$

with union $U = \bigcup_{j=1}^N (N+j)\mathbb{Z}$.

- ▶ *f* tiles with all $\Lambda_i \iff \hat{f}$ vanishes on $U \setminus \{0\}$.
- \triangleright *Erdős, 1935:* The integers divisible by one of $N+1$, $N+2$, ..., 2*N* have density *→* 0 as *N → ∞*.

▶ Define

$$
\Lambda_j = \lambda_j \mathbb{Z} = \frac{1}{N+j} \mathbb{Z}, \quad j = 1, 2, \dots, N.
$$

Then

$$
\Lambda_j^*=(N+j)\mathbb{Z},
$$

with union $U = \bigcup_{j=1}^N (N+j)\mathbb{Z}$.

- ▶ *f* tiles with all $\Lambda_i \iff \hat{f}$ vanishes on $U \setminus \{0\}$.
- \triangleright *Erdős, 1935:* The integers divisible by one of $N+1$, $N+2$, ..., 2*N* have density \rightarrow 0 as $N \rightarrow \infty$.
- ▶ *Tenenbaum, 1980*: Their density is

$$
O\left(\frac{1}{\log^{0.086\cdots} N}\right)
$$

.

$$
\blacktriangleright \text{ So dens } U = O\left(\frac{1}{\log^{0.086\cdots} N}\right).
$$

▶ So dens
$$
U = O\left(\frac{1}{\log^{0.086 \cdots} N}\right)
$$
.

▶ *Beurling*: *U* separated, dens $U < \rho$ \implies

$$
\exists f\colon [-\rho,\rho]\to\mathbb{C} \text{ with } \widehat{f}\equiv 0 \text{ on } U, \ \int f=1.
$$

▶ So dens
$$
U = O\left(\frac{1}{\log^{0.086 \cdots N}}\right)
$$
.

▶ *Beurling*: *U* separated, dens $U < \rho$ \implies

$$
\exists f\colon [-\rho,\rho]\to\mathbb{C} \text{ with } \widehat{f}\equiv 0 \text{ on } U, \ \int f=1.
$$

► With
$$
\rho = O\left(\frac{1}{\log^{0.086 \cdots} N}\right)
$$
 we get a common tile *f* of support $o(1)$.
▶ Scale up by a factor of *N*:

$$
f(x) = f(x/N)
$$
, diam supp $f = o(N)$,

$$
\Lambda'_j = N\Lambda_j = \frac{N}{N+j} \mathbb{Z} \text{ have vol } \sim 1.
$$

DIAMETER: THE CASE $d = 1$: LOWER BOUNDS

 \triangleright *f* tiles with $Λ_1, ..., Λ_N$, dens $Λ_j \sim 1$, \implies

f vanishes on $\Lambda_1^*, \ldots, \Lambda_N^*$.

DIAMETER: THE CASE $d = 1$: LOWER BOUNDS

• *f* tiles with
$$
\Lambda_1, \ldots, \Lambda_N
$$
, $\text{dens } \Lambda_j \sim 1$, \implies

f vanishes on $\Lambda_1^*, \ldots, \Lambda_N^*$.

▶ *Gilboa and Pinchasi, 2014*: The union of *n* arithmetic progressions of length *n* (of different step) contains, for any $\epsilon > 0$,

≳ *n* 2*−ϵ* points.

DIAMETER: THE CASE $d = 1$: LOWER BOUNDS

• *f* tiles with
$$
\Lambda_1, \ldots, \Lambda_N
$$
, $\text{dens } \Lambda_j \sim 1$, \implies

f vanishes on $\Lambda_1^*, \ldots, \Lambda_N^*$.

▶ *Gilboa and Pinchasi, 2014*: The union of *n* arithmetic progressions of length *n* (of different step) contains, for any $\epsilon > 0$,

≳ *n* 2*−ϵ* points.

▶ *Jensen's formula*: Since b*f* has ≳ *N* 2*−ϵ* roots in [*−N, N*] =*⇒*

diam supp $f \gtrsim \mathcal{N}^{1-\epsilon}$.

Thank you for your attention!