Some structure of Kakeya sets in \mathbb{R}^3

Joint with Josh Zahl

A Kakeya set in IR is ^a subset that contains ^a unit line segment in every direction 11

Besicovitch showed (1919) for any $2 > 0$, there exists a Kakeya set with Lebesgue measure $\leq \epsilon$.

Kakeya Conjecture (1917)	
Any Kakeya set $K \subseteq \mathbb{R}^d$ has dimension d .	
Hausdorff dim	or Minkowski dim
Harmonic analysis	
(Applications to PDE, number theory, dynamics, Geometric measure theory)	
Kakeya set \longrightarrow Fefferman's Counter example to Ball multiplier Conjecture	
Kakeya Conj \longleftarrow Stein's restriction Conjecture	

 $\begin{aligned} \mathbb{E}\xi \approx \int_{\Delta^{(k)}} e^{2\pi i(\mathbf{x})\xi} \langle \hat{\mathbf{v}}(\mathbf{x}) \rangle \, \mathrm{d}\mathbf{v}(\mathbf{x}) \\ \mathbb{I}(\mathbb{E}\xi)_{\underline{\mathbf{r}}} \leq c_{\mathbf{r}}(\mathbf{r}) \xi_{\underline{\mathbf{r}}} \quad , \quad \mathbf{v}_{\mathcal{R}^k} \geq \frac{2d}{d\mathbf{r}_\mathrm{T}} \; . \end{aligned}$

d=2 Davies 1971

473 open

Focus on $d = 3$

$$
Wolf_{5}(1995) \cdot \dim_{H} K \geq \frac{5}{2}
$$
\n
$$
Kat_{3}-taba - Tao (2000) : 3200, dim_{M} K \geq \frac{5}{2} + \epsilon
$$
\n
$$
Kat_{3}-Zahl (2017) : 3200, dim_{H} K \geq \frac{5}{2} + \epsilon
$$
\n
$$
W.-Zahl (2024) : Assoud dimension dim_{A} K = 3
$$

 $dim_H k \le dim_M k \le dim_A k$. For self similar sets. $dim_{H}k = dim_{M}k = dim_{A}k$.

5-thickening
\n6-thickening
\n6-dischetijed Kolouja set :
$$
K = UT
$$

\n6-dischetijed Kolouja set : $K = UT$
\n TCT
\n $dim_H K = 3$: $V s \cdot 0$, $IR| \ge 5$
\n $dim_M K = 3$: $V s \cdot 0$, $IR = 5$
\n $dim_M K = 3$: $V s \cdot 0$, $IR = 5$
\n $dim_M K = 3$: $V s \cdot 0$, $IR = 5$
\n $dim_M K = 3$: $V s \cdot 0$, $IR = 5$
\n $dim_M K = 3$: $V s \cdot 0$, $IR = 5$
\n $dim_M K = 3$: $V s \cdot 0$, $IR = 5$
\n $dim_M K = 3$: $Var_{M} = 5$
\n $dim_M K = 3$: $Var_{M} = 5$
\n $dim_M K = 3$: $Var_{M} = 5$
\n $dim_M K = 3$: $Var_{M} = 5$
\n $dim_M K = 3$: $Var_{M} = 5$
\n $dim_M K = 3$: $Var_{M} = 5$
\n $dim_M K = 3$: $Var_{M} = 5$
\n $dim_M K = 3$: $Var_{M} = 5$
\n $dim_M K = 3$: $Var_{M} = 5$
\n $dim_M K = 3$: $Var_{M} = 5$
\n $dim_M K = 3$: $Var_{M} = 5$
\n $dim_M K = 3$: $Var_{M} = 5$
\n $dim_M K = 3$: $Var_{M} = 3$
\n $dim_M K = 3$: $Var_{M} = 3$
\n $dim_M K = 3$: $Var_{M} = 3$
\n $dim_M K = 3$: $Var_{M} = 3$

Why Wolff's estimate is hard to improve?

Wolff Axiom for π : $|\pi| = 5^{-2}$, any $6 \times \rho \times 1$ box contains $\leq \frac{\rho}{5}$ tubes of π .

Wolff's estimate holds for any set of S-tubes Satisfying Wolff Axiom. (not necessarily in R³!) Kakeya set satisfies Wolff Axiom.

Key Obstacle: Heisenberg group $H = \{ (z_1, z_2, z_3) \in \mathbb{C}^3 : \mathbb{T}_m(z_1) = \mathbb{T}_m (z_2 \overline{z}_3) \}$ $\forall s. t \in \mathbb{R}$, $\alpha \in \mathbb{C}$, the line $l_{s.t.\alpha} := \begin{cases} 0 & \text{if } s \neq t \\ 0 & \text{if } s \neq t \end{cases}$, $2, 0 & \text{if } s \neq 0$, $3 & \text{if } s \in \mathbb{C}$ $T = \{ N_{\delta} \text{ l}_{s.t.a} \} _{s.t.c}$ Satisfies Wolff Axiom. $\alpha \in \mathbb{C}$

$$
But \dim_{\mathbb{R}} H = 5 = \frac{5}{2} \dim_{\mathbb{R}} C
$$

To overcome this obstacle:

Q Use II contains a 8-tube in every direction (Katz- taba-Tao, Dvir) It Difficult to induct. does not preserve under thickening or zooming in.

By use tubes are in
$$
\mathbb{R}^3
$$
, not in \mathbb{C}^3 (katz-2ahl, W.-2ahl)

Key ingredient for 6
\nBourgain's discretized sum product theorem (Configuration a Conj of
\n
$$
ocsc1
$$
, $\exists \epsilon >0$, for any $A \in \mathbb{L}^{1,2}$ satisfy ing
\n $(A \cap B_1)_{\delta} \le f^s |A|_{\delta}$, $\forall r \in \mathbb{L}^{s,1}$
\nwe have
\n $max \{ |A+A|_{\delta}, |A+A|_{\delta} \} \ge |A|_{\delta}^{\text{tr}\epsilon}$

i.e. R does not contain a subring of Hausdorff dim s \in (0, 1). (Miller - Edgar)

Set up

$$
\pi satisfies Convex Wolff Axiom if V any convex set U,\nTLU: = \{ T \in T : T \subseteq U \}
$$
\n
$$
\# TLU \leq IUI \cdot \# T \qquad (\Rightarrow \# T \geq \delta^{-2})
$$

Conj: For any set T of distinct 5-tubes in R³ satisfying

\nConvex Wolf Axiom

\n
$$
|\bigcup_{T \in T} T | \geq C_{\epsilon} 8^{\epsilon}
$$

Remarks:. This conjecture. if true, is an if and only if" Condition. More general than Kakeya conjecture.

In \mathbb{R}^4 , not true because of $\{xy - zw = 1\}$. \bullet + polynomial convex Wolff Axiom?

 π satisfies Convex Wolff Axiom if V any convex set U, $TIV = \{ TET : TSV\}$ $\# \mathbb{T}[\cup] \leqslant | \cup | \cdot \# \mathbb{T}$ $(\Rightarrow \# \mathbb{T} \geqslant \delta^{-2})$

 T_{hm} (W. Zahl 2024+) \forall ϵ > 0 such that the following holds for δ > 0 sufficiently small. For any set T of distinct s -tubes satisfying Convex Wolff Axiom, $8 \le \rho_1$ c ρ_2 δ^{27} \leq δ^{27} . K .
T $|N_{\rho_1}k| \geq (\frac{\rho_1}{\rho_2})^{\epsilon}$ $|N_{\rho_2}k|$

Digest the notation

Set up \P satisfies Convex Wolff Axiom if V any convex set U, $TIV = \{ T \in T : T \subseteq U \}$ $\# \text{TLU1} \leq \text{LU} \cdot \# \text{TT} \qquad \left(\Rightarrow \# \text{TT} \geq \delta^{-2} \right)$. Convex Wolff Axiom preserves under thickening

Booming in?

Dichotomy : find a "worst" T.

· Either T satisfies Convex Wolff Axiom at every Scales : $\forall P \in (S, \cdot)$. $\forall T_P \in T_P (P\text{-tubes covering } T)$ TILT, I satisfies Convex Wolff Axiom.

In this case, apply an earlier result $CW.-Zah$) on Sticky Kakeya sets to show $dim_H K = 3$. $K = UT$ $I \in \mathcal{N}$ This is where Bourgain's discretized sum produit is used (Orponen-Shmerkin-W.)

or K has Assouad dimension 3

To prove the dichotomy

Let π be a set of δ tubes satisfying Convex Wolff Axiom with $K = UT$ having <u>smallest Assouad dimension</u>, among these minimizers choose one with $|\mathbb{T}| = S^{-\alpha}$ a largest.

$$
\Rightarrow |\mathbb{T}_{\rho}| \leq \rho^{-\alpha}, |\mathbb{T}[\Gamma_{\rho}]| \leq (\frac{s}{\rho})^{-\alpha} \quad \forall \rho \in (s, 1) \longrightarrow (*)
$$
\n
$$
\varphi_{T_{\rho}} : T_{\rho} \rightarrow [0, 1]^{3} \quad \text{If } \varphi_{T_{\rho}}(\pi[\Gamma_{\rho}]) \text{ fails Convex Wolf Axi},
$$
\nThen there exist (many) a x b x 1 boxes W, a < c b, such that\n
$$
|\pi[\omega]| \text{ is large.}
$$

 $(A) \Rightarrow W$ contains many $Ta : |N_qk \cap W| \approx |W|$

If $\{w\}$ intersect transversally, take $\rho_i = a$, $\rho_z = a \delta^{2}$.

 $\ddot{}$

Otherwise
$$
\{w\}
$$
 intersect tangentially, replace
\n*W* with a larger $\hat{a} \times \hat{b} \times 1 - box : \frac{\hat{a}}{\hat{b}} = \frac{a}{b}$.
\nIterate until $\hat{b} \approx 1$ and estimate $N_{\hat{a}} K = U \tilde{w}$ directly

 \bullet

Some thoughts on the set up

Restricted projection problem (introduced by Fässler • Orponen) Given a smooth curve $V(t) \subseteq G(n, m) = \{m \}$ dim subspace in \mathbb{R}^n $P_t : \mathbb{R}^n \to \forall t$. orthogonal projection. $E \in \mathbb{R}^n$. Borel set. What is sup dim_H $P_t E$?
teco.i

$$
\frac{Ex1}{x+1}:\quad \gamma_{1}(t) = (1, 0, t, 0), \quad \gamma_{2}(t) = (0, 1, 0, t)
$$
\n
$$
V(t) = Span(\gamma_{1}(t), \gamma_{2}(t)) \le G(4, 2)
$$
\n
$$
P_{t}: \mathbb{R}^{4} \to \mathbb{R}^{2}
$$
\n
$$
\approx \mapsto (x \cdot \gamma_{1}(t), x \cdot \gamma_{2}(t))
$$
\n
$$
\exists E, \quad \dim_{H} E = 2, \quad P_{t} E \text{ is a line } \forall t \in [0, 1]
$$
\n
$$
\text{Need to add the right assumption } \approx \text{ Kakeya problem in } \mathbb{R}^{3}
$$

$$
E = \{(a, b, c, d)\} : Set of parameters for tubes\n
$$
P_{t} E = \{(a + ct, b + dt)\}
$$
\n
$$
= aslice of union of tubes
$$
\n
$$
= \{b + ct, b + dt\}
$$
\n
$$
= a slice of union of tubes
$$
$$

Ex2	Y(E)= (1, t, $\frac{t^2}{2!}$, $\frac{t^3}{3!}$)
Y2(E) = (0, 1, t, $\frac{t^2}{2!}$)	
Sup dim H	E = min{dim _H E, 2}
Step dim _H P _E = min{dim _H E, 2}	
Eqo.1	(Gan-Guo-U.)
proof uses harmonic analysis	
Byn–gain-Demeter-Guch decoupling)	
1?	Proof without Fourier analysis?

General Problem $V(t) \subseteq G(n,m)$, $P_t : \mathbb{R}^n \longrightarrow V(t)$ orthogonal projection. $E \subseteq \mathbb{R}^n$ Borel set. 1 For what VI+) do we have $\sup_{t\in [0,1]} \dim_H P_t E = \min \{ \dim_H E, m \}$? 2 When O is false, What reasonable assumptions to add on E s.t. we have ^a good estimate sup dim $P_t \in$ $t \in [0,1]$

Thank you