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Background: Two Dimensions Higher Dimensions

Almost Covers of Rectangular Grids

Theorem (Alon–Füredi, 1993)

For sets S1, S2, · · · , Sn ⊂ R, the minimum number of affine hyperplanes in Rn

needed to cover all but one point of S1 × S2 × · · · × Sn and leave the last point
uncovered is

n∑
i=1

(|Si | − 1).
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Background: Two Dimensions Higher Dimensions

Why remove a point?

If we instead insist on covering every point of S1 × S2 × . . .Sn, then this is a
very boring question.

Every point lies on a hyperplane of maximum size!
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Background: Two Dimensions Higher Dimensions

Triangular Grids

Not every point lies on a hyperplane of maximum size!

Alexander Clifton Covers of Triangular Grids 6



Background: Two Dimensions Higher Dimensions

Notation

Let Td(n) := {(x1, · · · , xd) ∈ Zd
≥0 | x1 + · · ·+ xd ≤ n − 1}.

Let f (n, d , k) denote the minimum number of hyperplanes needed to cover
every point of Td(n) at least k times.
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Background Two Dimensions: Higher Dimensions

Integer Covering

Theorem (Basit–C.–Horn, 2023+)

For all n ≥ 2,

f (n, 2, k) =


n if k = 1,

3n/2 if k = 2,

9n/4 if k = 3,

3n if k = 4.
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Background Two Dimensions: Higher Dimensions

Proof for k = 4: Upper Bound

Theorem (Basit–C.–Horn, 2023+)

For all n ≥ 2, f (n, 2, 4) = 3n.

Proof.

Our construction consists solely of lines parallel to the sides of the outer
triangle.

Lines x = i , y = i , and x + y = n − 1− i for i ∈ {0, . . . , n−1
3
} have

multiplicity 2.

Lines x = i , y = i , and x + y = n − 1− i for i ∈ { n−1
3

+ 1, . . . , 2n
3
− 1}

have multiplicity 1.
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Background Two Dimensions: Higher Dimensions

Proof for k = 4: Lower Bound

Theorem (Basit–C.–Horn, 2023+)

For all n ≥ 2, f (n, 2, 4) = 3n.

Proof.

We proceed by induction to show f (n, 2, 4) ≥ 3n.

If we have to use one of the outer lines (x = 0, y = 0, or x + y = n − 1) at
least three times, then that means we require at least
f (n − 1, 2, 4) + 3 = (3n − 3) + 3 lines.

If we use each outer line at most twice, this leaves 3(n − 2) points on the
boundary that need to be covered an additional two times each. Only two of
these can be covered at a time by any other line so that forces at least
3(n−2)(2)

2
= 3n − 6 more lines for a total of 3n − 6 + 6 = 3n.
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Background Two Dimensions: Higher Dimensions

Integer Program

f (d , n, k) is the minimum number of hyperplanes needed to cover every point
of Td(n) at least k times each.

This can be interpreted as the optimum of an integer program:

Variables correspond to how many times each hyperplane is used.

Constraints correspond to each of the grid points being covered at least k
times.
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Background Two Dimensions: Higher Dimensions

Linear Relaxation

We define f ∗(n, d , k) to be the optimum of the linear relaxation. We write
f ∗(n, d) := f ∗(n, d , 1).

f (n, d , k) ≥ f ∗(n, d , k) = kf ∗(n, d).

Theorem (Basit–C.–Horn, 2023+)

For all integers j ≥ 0, 
f ∗(3j + 1, 2) = 2j + 1,

f ∗(3j + 2, 2) = 2j + 1 +
2j + 1

3j + 2
,

f ∗(3j + 3, 2) = 2j + 2 +
j + 1

3j + 4
.

1,
3

2
,

9

4
, 3,

18

5
,

30

7
, 5, . . .
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Background Two Dimensions: Higher Dimensions

Fractional Covering: Upper Bound

Theorem (Basit–C.–Horn, 2023+)

f ∗(3j + 1, 2) = 2j + 1 for all integers j ≥ 0.

T2(3j + 1) = {(x , y) | x , y ≥ 0, x + y ≤ 3j}. We can cover all these points with
the following lines:

x = i for i = 0, · · · , 2j − 1 with weight 2j−i
3j

,

y = i from i = 0, · · · , 2j − 1 with weight 2j−i
3j

, and

x + y = 3j − i from i = 0, · · · , 2j − 1 with weight 2j−i
3j

.

If i1, i2 ≤ 2j − 1, (i1, i2) is covered with weight 2j−i1
3j

by a vertical line and

weight 2j−i2
3j

by a horizontal line for a total weight of 4j−i1−i2
3j

.

If this is not at least 1, i1 + i2 ≥ j + 1 and the point is covered by a diagonal
line with weight i1+i2−j

3j
for a total weight of 1.
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Background Two Dimensions: Higher Dimensions

Fractional Covering: Lower Bound

Theorem (Basit–C.–Horn, 2023+)

f ∗(3j + 1, 2) = 2j + 1 for all integers j ≥ 0.

1
12

2
12

3
12
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Background Two Dimensions: Higher Dimensions
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Background Two Dimensions: Higher Dimensions

Fractional Covering: Lower Bound

Theorem (Basit–C.–Horn, 2023+)
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Background Two Dimensions: Higher Dimensions

Fractional Covering: Lower Bound

Theorem (Basit–C.–Horn, 2023+)

f ∗(3j + 1, 2) = 2j + 1 for all integers j ≥ 0.

3
12

2
12

1
12
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Background Two Dimensions: Higher Dimensions

Integer Covering Revisited

We automatically get the bound f (n, 2, k) ≥ kf ∗(n, 2) but it is not tight.

For example, f ∗(n, 2) = 2n/3 + O(1), but f (n, 2, 4) = 3n rather than
8n/3 + O(1).

Computations suggest f (n, 2, k) = Ckn + O(1) for some constant Ck and in
particular that C5 = 18/5,C6 = 30/7, and C7 = 5.
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Background Two Dimensions: Higher Dimensions

Conjecture

Conjecture (Basit–C.–Horn, 2023+)

For k ≥ 1,
f (n, 2, k) = (f ∗(k, 2))n + Ok(1).

We can translate the upper bound construction for the fractional problem
to the necessary upper bound construction for the integer program.

The desired lower bound on f (n, 2, k) holds under certain natural
constraints.
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Background Two Dimensions Higher Dimensions:

Results

Recall that f (n, d , k) is the minimum number of hyperplanes needed to cover
every point of Td(n) := {(x1, · · · , xd) ∈ Zd

≥0 | x1 + · · ·+ xd ≤ n − 1} at least k
times.

Theorem

a) If k ≥ 2 and d ≥ 2k − 3, then

f (n, d , k) =

(
1 +

k − 1

d − k + 2

)
n + Od,k(1),

b) If k ≥ 3 and 2k − 3 ≥ d ≥ k − 2, then

f (n, d , k) =

(
2 +

2k − 3− d

2d + 3− k

)
n + Od,k(1).

Alexander Clifton Covers of Triangular Grids 27



Background Two Dimensions Higher Dimensions:

Key Observations

Fix d and k.

1) Suppose you want to show a lower bound of f (n, d , k) ≥ Cn + C ′ via
induction on n. It suffices to assume that all bounding hyperplanes
(xi = 0 or x1 + · · ·+ xd = n − 1) are used fewer than C times.

2) The intersection of a bounding hyperplane H with Td(n) is a copy of
Td−1(n). Any hyperplane not parallel to H intersects this in an affine
subspace of dimension d − 2. Thus, the number of hyperplanes needed to
cover k times this copy of Td−1(n) without using H is at least
f (n, d − 1, k).
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Background Two Dimensions Higher Dimensions:

Proof Example

We induct on k. Suppose we wish to show that f (n, 6, 4) = 7n/4 + O(1) and
we already know that f (n, 5, 3) = 3n/2 + O(1).

By Observation 1), it suffices to assume that every bounding hyperplane of
T6(n) has multiplicity at most 1. Then excluding the bounding hyperplanes
used, each face of the grid, which is a copy of T5(n), includes an interior copy
of T5(n − 6) whose points have been covered at most once.

We cannot use anymore bounding hyperplanes so by Observation 2), each of
these copies requires at least f (n − 6, 5, 3) = 3n/2 + O(1) hyperplanes to be
covered an additional three times. However, no hyperplane will intersect all
seven copies of T5(n − 6) that need to be covered, so this requires at least(

7

6

)
(3n/2 + O(1)) = 7n/4 + O(1).
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Background Two Dimensions Higher Dimensions:

Open Problems

Is f (n, 3, k) =
(
k+1
2

)
n + Ok(1) for odd k and

(
k+1
2
− 1

2(k+1)

)
n + Ok(1)

for even k?

Determine the asymptotic formula (in terms of n) for general f (n, d , k).

Is f (n, d , k) ≥ f ∗(k, d)n for all n, d , k?

Does f (n, d , k) = f (k, d , n) for all n, d , k?
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Background Two Dimensions Higher Dimensions:

Thank you!

Any Questions?
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