Distance problems and geometric averaging operators

Eyvindur Ari Palsson

Department of Mathematics Virginia Tech

July 16, 2024

IBS-DIMAG Workshop on Combinatorics and Geometric Measure Theory

▶ The *distance set* of $E \subseteq \mathbb{R}^d$ is

$$D(E) = \{ |x_1 - x_2| : x_1, x_2 \in E \}$$

▶ The *distance set* of $E \subseteq \mathbb{R}^d$ is

$$D(E) = \{|x_1 - x_2| : x_1, x_2 \in E\}$$

• Steinhaus showed if $\mathcal{L}^d(E) > 0$ then

$$E - E := \{x_1 - x_2 : x_1, x_2 \in E\}$$

contains a neighborhood of the origin.

1

▶ The *distance set* of $E \subseteq \mathbb{R}^d$ is

$$D(E) = \{|x_1 - x_2| : x_1, x_2 \in E\}$$

$$E - E := \{x_1 - x_2 : x_1, x_2 \in E\}$$

contains a neighborhood of the origin.

Immediately implies

$$\mathcal{L}^{d}(E) > 0 \implies \mathcal{L}(D(E)) > 0$$

and further D(E) contains an interval.

▶ The *distance set* of $E \subseteq \mathbb{R}^d$ is

$$D(E) = \{|x_1 - x_2| : x_1, x_2 \in E\}$$

$$E - E := \{x_1 - x_2 : x_1, x_2 \in E\}$$

contains a neighborhood of the origin.

$$\mathcal{L}^{d}(E) > 0 \implies \mathcal{L}(D(E)) > 0$$

and further D(E) contains an interval.

▶ Idea:
$$E \subseteq \mathbb{R}^d$$
 large $\implies D(E)$ large (& structured)

The Falconer distance problem

▶ How large does dim_{*H*}(*E*), for $E \subset \mathbb{R}^d$, $d \ge 2$, need to be to ensure that $\mathcal{L}(D(E)) > 0$?

The Falconer distance problem

- How large does dim_H(E), for E ⊂ ℝ^d, d ≥ 2, need to be to ensure that L(D(E)) > 0?
- Can construct $E \subset \mathbb{R}$ with dim_{\mathcal{H}}(E) = 1 such that $\mathcal{L}(D(E)) = 0$.

The Falconer distance problem

How large does dim_H(E), for E ⊂ ℝ^d, d ≥ 2, need to be to ensure that L(D(E)) > 0?

• Can construct $E \subset \mathbb{R}$ with dim_{\mathcal{H}}(E) = 1 such that $\mathcal{L}(D(E)) = 0$.

• Falconer's conjecture dim_{\mathcal{H}}(E) > $\frac{d}{2}$

Encode dimension with measures

For a compact set E ⊂ ℝ^d and 0 < s < dim_H(E) there is a probability measure µ supported on E with

 $\mu(B_r) \lesssim r^s$

for any ball B_r of radius r. Call μ a Frostman measure.

Encode dimension with measures

For a compact set E ⊂ ℝ^d and 0 < s < dim_H(E) there is a probability measure µ supported on E with

 $\mu(B_r) \lesssim r^s$

for any ball B_r of radius r. Call μ a Frostman measure.

Taking s arbitrarily smaller

$$I_{s}(\mu) = \iint |x-y|^{-s} d\mu(x) d\mu(y) = c_{s,d} \int |\widehat{\mu}(\xi)|^{2} |\xi|^{s-d} d\xi < \infty$$

Call $I_s(\mu)$ the energy integral of μ .

Distance measure

• Define the distance measure $\delta(\mu)$, supported on D(E), by the relation

$$\int f(r) d\delta(\mu)(r) = \iint f(|x_1-x_2|) d\mu(x_1) d\mu(x_2)$$

for any continuous function f, where μ is a Frostman measure supported on E.

Distance measure

• Define the distance measure $\delta(\mu)$, supported on D(E), by the relation

$$\int f(r) d\delta(\mu)(r) = \iint f(|x_1-x_2|) d\mu(x_1) d\mu(x_2)$$

for any continuous function f, where μ is a Frostman measure supported on E.

•
$$\delta(\mu)(D(E)) = 1$$

Distance measure

• Define the distance measure $\delta(\mu)$, supported on D(E), by the relation

$$\int f(r) d\delta(\mu)(r) = \iint f(|x_1-x_2|) d\mu(x_1) d\mu(x_2)$$

for any continuous function f, where μ is a Frostman measure supported on E.

$$\blacktriangleright \ \delta(\mu)(D(E)) = 1$$

• Approximate μ by a smooth function μ_{ϵ} and get

$$\int f(r) d\delta(\mu_{\epsilon})(r) = \iint f(|x_1 - x_2|) \mu_{\epsilon}(x_1) \mu_{\epsilon}(x_2) dx_1 dx_2$$
$$= \int f(r) \left(\int (\sigma_r * \mu_{\epsilon})(x) \mu_{\epsilon}(x) dx \right) dr$$

Spherical averaging operator appears

Distance measure has density given by

$$\delta(\mu_{\epsilon})(r) = \int (\sigma_r * \mu_{\epsilon})(x) \mu_{\epsilon}(x) dx = r^{d-1} \langle A_r(\mu_{\epsilon}), \mu_{\epsilon} \rangle$$

where A_r is the spherical averaging operator

$$A_r(f)(x) = \frac{1}{r^{d-1}}(\sigma_r * f)(x) = \int_{\mathbb{S}^{d-1}} f(x - ry) d\sigma(y)$$

Many bounds for the spherical averaging operator

$$A_r: L^p(\mathbb{R}^d) \to L^p(\mathbb{R}^d), \ p \ge 1, \text{ for example}$$
$$\|A_r(f)\|_{L^1} \le \int_{\mathbb{S}^{d-1}} \|f\|_{L^1} \, d\sigma(y) = \|f\|_{L^1}$$

Geometric averaging operators and point configurations Many bounds for the spherical averaging operator

Many bounds for the spherical averaging operator

►
$$A_r : L^p(\mathbb{R}^d) \to L^p(\mathbb{R}^d), \ p \ge 1$$
, for example
 $\|A_r(f)\|_{L^1} \le \int_{\mathbb{S}^{d-1}} \|f\|_{L^1} \, d\sigma(y) = \|f\|_{L^1}$

•
$$L^p$$
 improving estimate $A_r : L^{\frac{d+1}{d}}(\mathbb{R}^d) \to L^{d+1}(\mathbb{R}^d)$ adds
 $A_r : L^p(\mathbb{R}^d) \to L^q(\mathbb{R}^d)$
if and only if
 $(\frac{1}{p}, \frac{1}{q})$ is within the closed triangle (0,0), (1,1), $(\frac{d}{d+1}, \frac{1}{d+1})$.

Many bounds for the spherical averaging operator

►
$$A_r : L^p(\mathbb{R}^d) \to L^p(\mathbb{R}^d), \ p \ge 1$$
, for example
 $\|A_r(f)\|_{L^1} \le \int_{\mathbb{S}^{d-1}} \|f\|_{L^1} \, d\sigma(y) = \|f\|_{L^1}$

▶
$$L^p$$
 improving estimate $A_r : L^{\frac{d+1}{d}}(\mathbb{R}^d) \to L^{d+1}(\mathbb{R}^d)$ adds
 $A_r : L^p(\mathbb{R}^d) \to L^q(\mathbb{R}^d)$
if and only if
 $\left(\frac{1}{p}, \frac{1}{q}\right)$ is within the closed triangle (0,0), (1,1), $\left(\frac{d}{d+1}, \frac{1}{d+1}\right)$.

Sobolev bounds, such as

$$A_r: L^2_s(\mathbb{R}^d) \to L^2_{s+\frac{d-1}{2}}(\mathbb{R}^d)$$

Key stationary phase estimate for Sobolev bound

$$|\widehat{\sigma}(\xi)| = \left|\int e^{-2\pi i y \cdot \xi} d\sigma(y)\right| \lesssim |\xi|^{-rac{d-1}{2}}$$

Key stationary phase estimate for Sobolev bound

$$|\widehat{\sigma}(\xi)| = \left|\int e^{-2\pi i y \cdot \xi} d\sigma(y)\right| \lesssim |\xi|^{-rac{d-1}{2}}$$

• Yields boundedness of the density if $\dim_{\mathcal{H}}(E) > \frac{d}{2} + \frac{1}{2}$

$$\delta(\mu_{\epsilon})(r) \lesssim_{r} \|A_{r}(\mu_{\epsilon})\|_{L^{2}_{\frac{d-1}{4}}}^{1/2} \|\mu_{\epsilon}\|_{L^{2}_{-\frac{d-1}{4}}}^{1/2} \leq \|\mu_{\epsilon}\|_{L^{2}_{-\frac{d-1}{4}}}^{2} = I_{\frac{d+1}{2}}(\mu_{\epsilon})$$

Key stationary phase estimate for Sobolev bound

$$|\widehat{\sigma}(\xi)| = \left|\int e^{-2\pi i y \cdot \xi} d\sigma(y)\right| \lesssim |\xi|^{-rac{d-1}{2}}$$

• Yields boundedness of the density if dim_{\mathcal{H}} $(E) > \frac{d}{2} + \frac{1}{2}$

$$\delta(\mu_{\epsilon})(r) \lesssim_{r} \|A_{r}(\mu_{\epsilon})\|_{L^{2}_{\frac{d-1}{4}}}^{1/2} \|\mu_{\epsilon}\|_{L^{2}_{-\frac{d-1}{4}}}^{1/2} \leq \|\mu_{\epsilon}\|_{L^{2}_{-\frac{d-1}{4}}} = I_{\frac{d+1}{2}}(\mu_{\epsilon})$$

• In the limit $\delta(\mu)$ has density

$$\delta(\mu)(r) = r^{d-1} \int \widehat{\sigma}(r\xi) |\widehat{\mu}(\xi)|^2 d\xi$$

which is bounded by the energy integral and continuous in r.

Key stationary phase estimate for Sobolev bound

$$|\widehat{\sigma}(\xi)| = \left|\int e^{-2\pi i y \cdot \xi} d\sigma(y)\right| \lesssim |\xi|^{-rac{d-1}{2}}$$

• Yields boundedness of the density if dim_{\mathcal{H}} $(E) > \frac{d}{2} + \frac{1}{2}$

$$\delta(\mu_{\epsilon})(r) \lesssim_{r} \|A_{r}(\mu_{\epsilon})\|_{L^{2}_{\frac{d-1}{4}}}^{1/2} \|\mu_{\epsilon}\|_{L^{2}_{-\frac{d-1}{4}}}^{1/2} \leq \|\mu_{\epsilon}\|_{L^{2}_{-\frac{d-1}{4}}} = I_{\frac{d+1}{2}}(\mu_{\epsilon})$$

• In the limit $\delta(\mu)$ has density

$$\delta(\mu)(r) = r^{d-1} \int \widehat{\sigma}(r\xi) |\widehat{\mu}(\xi)|^2 d\xi$$

which is bounded by the energy integral and continuous in r.

► 1 =
$$\delta(\mu)(D(E)) = \int_{D(E)} \delta(\mu)(r) dr \le \|\delta(\mu)\|_{L^{\infty}} \mathcal{L}(D(E))$$

First results

• Falconer dim_{$$\mathcal{H}$$}(E) > $\frac{d}{2} + \frac{1}{2} \implies \mathcal{L}(D(E)) > 0$

First results

• Falconer dim_{$$\mathcal{H}$$}(E) > $\frac{d}{2} + \frac{1}{2} \implies \mathcal{L}(D(E)) > 0$

Mattila and Sjölin dim_H(E) > ^d/₂ + ¹/₂ ⇒ D(E) contains an interval

• $\|\delta(\mu)\|_{L^2} < \infty$ implies $\mathcal{L}(D(E)) > 0$ (Mattila's program).

• Wolff and Erdoğan dim $_{\mathcal{H}}(E) > \frac{d}{2} + \frac{1}{3}$ in \mathbb{R}^d

First results

• Falconer dim_{$$\mathcal{H}$$}(E) > $\frac{d}{2} + \frac{1}{2} \implies \mathcal{L}(D(E)) > 0$

► Mattila and Sjölin dim_H(E) > $\frac{d}{2} + \frac{1}{2} \implies D(E)$ contains an interval

• $\|\delta(\mu)\|_{L^2} < \infty$ implies $\mathcal{L}(D(E)) > 0$ (Mattila's program).

• Wolff and Erdoğan dim $_{\mathcal{H}}(E) > \frac{d}{2} + \frac{1}{3}$ in \mathbb{R}^d

 Flurry of improvements recently due to Du, Guth, losevich, Ou, Ren, Wang, Wilson and Zhang.

• dim_{$$\mathcal{H}$$}(E) > $\frac{d}{2} + \frac{1}{4} + \frac{1}{8d-4}$ in \mathbb{R}^d

First results

• Falconer dim_{$$\mathcal{H}$$}(E) > $\frac{d}{2} + \frac{1}{2} \implies \mathcal{L}(D(E)) > 0$

Mattila and Sjölin dim_H(E) > ^d/₂ + ¹/₂ ⇒ D(E) contains an interval

• $\|\delta(\mu)\|_{L^2} < \infty$ implies $\mathcal{L}(D(E)) > 0$ (Mattila's program).

• Wolff and Erdoğan dim $_{\mathcal{H}}(E) > \frac{d}{2} + \frac{1}{3}$ in \mathbb{R}^d

 Flurry of improvements recently due to Du, Guth, losevich, Ou, Ren, Wang, Wilson and Zhang.

• dim_{$$\mathcal{H}$$}(E) > $\frac{d}{2} + \frac{1}{4} + \frac{1}{8d-4}$ in \mathbb{R}^d

• dim
$$_{\mathcal{H}}(E) > \frac{d}{2} + \frac{1}{4}$$
 in \mathbb{R}^d , $d \ge 2$ even

First results

• Falconer dim_{$$\mathcal{H}$$}(E) > $\frac{d}{2} + \frac{1}{2} \implies \mathcal{L}(D(E)) > 0$

Mattila and Sjölin dim_H(E) > ^d/₂ + ¹/₂ ⇒ D(E) contains an interval

• $\|\delta(\mu)\|_{L^2} < \infty$ implies $\mathcal{L}(D(E)) > 0$ (Mattila's program).

• Wolff and Erdoğan dim $_{\mathcal{H}}(E) > \frac{d}{2} + \frac{1}{3}$ in \mathbb{R}^d

- Flurry of improvements recently due to Du, Guth, losevich, Ou, Ren, Wang, Wilson and Zhang.
 - dim_{\mathcal{H}}(E) > $\frac{d}{2} + \frac{1}{4} + \frac{1}{8d-4}$ in \mathbb{R}^d

• dim_{$$\mathcal{H}$$} $(E) > \frac{d}{2} + \frac{1}{4}$ in \mathbb{R}^d , $d \ge 2$ even

• dim_{\mathcal{H}}(E) > $\frac{d}{2} + \frac{1}{4} - \frac{1}{8d+4}$ in \mathbb{R}^d , $d \ge 3$

Many interesting point configurations

► Can we guarantee Falconer or even Mattila-Sjölin type results for many distance configuration graphs G in R²?

- ► Can we guarantee Falconer or even Mattila-Sjölin type results for many distance configuration graphs G in R²?
- Expect to need to handle density of the type

$$\Lambda_G^{\epsilon}(f_1,\ldots,f_n) = \int \cdots \int \prod_{\{(i,j):1 \le i < j \le n; E(i,j)=1\}} \sigma^{\epsilon}(|x_i-x_j|) \prod_{i=1}^n f_i(x_i) dx_i$$

- ► Can we guarantee Falconer or even Mattila-Sjölin type results for many distance configuration graphs G in R²?
- Expect to need to handle density of the type

$$\Lambda_G^{\epsilon}(f_1,\ldots,f_n) = \int \cdots \int \prod_{\{(i,j):1 \le i < j \le n; E(i,j)=1\}} \sigma^{\epsilon}(|x_i-x_j|) \prod_{i=1}^n f_i(x_i) dx_i$$

Would like Sobolev type bounds for the form.

- ► Can we guarantee Falconer or even Mattila-Sjölin type results for many distance configuration graphs G in R²?
- Expect to need to handle density of the type

$$\Lambda_G^{\epsilon}(f_1,\ldots,f_n) = \int \cdots \int \prod_{\{(i,j):1 \le i < j \le n; E(i,j)=1\}} \sigma^{\epsilon}(|x_i-x_j|) \prod_{i=1}^n f_i(x_i) dx_i$$

- Would like Sobolev type bounds for the form.
- Can we even get L^p improving ones?

• G graph with with vertices $\{1, \ldots, n\}$ and edge set E

• Let
$$F : \mathbb{R}^{2n} \to \mathbb{R}^{|E|}$$
 be the map

$$F(x_1, ..., x_n) = (|x_i - x_j|)_{ij}$$
 for $\{i, j\} \in E, i < j$

• G graph with with vertices $\{1, \ldots, n\}$ and edge set E

• Let
$$F : \mathbb{R}^{2n} \to \mathbb{R}^{|E|}$$
 be the map

 $F(x_1, ..., x_n) = (|x_i - x_j|)_{ij}$ for $\{i, j\} \in E, i < j$

• Set $M = F^{-1}(\mathbf{t})$ where $\mathbf{t} = (t_1, ..., t_{|E|})$.

• G graph with with vertices $\{1, \ldots, n\}$ and edge set E

• Let
$$F : \mathbb{R}^{2n} \to \mathbb{R}^{|E|}$$
 be the map

 $F(x_1, ..., x_n) = (|x_i - x_j|)_{ij}$ for $\{i, j\} \in E, i < j$

• Set
$$M = F^{-1}(\mathbf{t})$$
 where $\mathbf{t} = (t_1, ..., t_{|E|})$.

Say G is regularly realizable if M ≠ Ø and t is a regular value of F.

• G graph with with vertices $\{1, \ldots, n\}$ and edge set E

• Let
$$F : \mathbb{R}^{2n} \to \mathbb{R}^{|E|}$$
 be the map

 $F(x_1, ..., x_n) = (|x_i - x_j|)_{ij}$ for $\{i, j\} \in E, i < j$

• Set
$$M = F^{-1}(\mathbf{t})$$
 where $\mathbf{t} = (t_1, ..., t_{|E|})$.

Say G is regularly realizable if M ≠ Ø and t is a regular value of F.

A non-example: Cycle on 4 vertices.

• G graph with with vertices $\{1, \ldots, n\}$ and edge set E

• Let
$$F : \mathbb{R}^{2n} \to \mathbb{R}^{|E|}$$
 be the map

 $F(x_1, ..., x_n) = (|x_i - x_j|)_{ij}$ for $\{i, j\} \in E, i < j$

• Set
$$M = F^{-1}(\mathbf{t})$$
 where $\mathbf{t} = (t_1, ..., t_{|E|})$.

Say G is regularly realizable if M ≠ Ø and t is a regular value of F.

- A non-example: Cycle on 4 vertices.
- Regularly realizable generalizes a previous notion of a locally infinitesimally rigid configuration due to Chatzikonstantinou, losevich, Mkrtchyan and Pakianathan.

L^p improving estimates are possible

$$\Lambda_G^{\epsilon}(f_1,\ldots,f_n) = \int \cdots \int \prod_{\{(i,j):1 \le i < j \le n; E(i,j)=1\}} \sigma^{\epsilon}(|x^i - x^j|) \prod_{i=1}^n f_i(x^i) dx^i$$

Theorem (Iosevich, P, Wyman, Zhai)

Let G be a connected graph on $n \ge 2$ vertices which is regularly realizable in \mathbb{R}^2 . Then, the multilinear form Λ_G^{ϵ} is bounded uniformly in ϵ on $L^{p_1}(\mathbb{R}^2) \times \cdots \times L^{p_n}(\mathbb{R}^2)$ for all $(\frac{1}{p_1}, \ldots, \frac{1}{p_n})$ contained in the convex hull of the points

$$\{e_1,\ldots,e_n\}\cup\left\{\frac{2}{3}e_i+\frac{2}{3}e_j\right\}_{\{i,j\}\in E}$$

L^p improving estimates are possible

$$\Lambda_G^{\epsilon}(f_1,\ldots,f_n) = \int \cdots \int \prod_{\{(i,j):1 \le i < j \le n; E(i,j)=1\}} \sigma^{\epsilon}(|x^i - x^j|) \prod_{i=1}^n f_i(x^i) dx^i$$

Theorem (losevich, P, Wyman, Zhai)

Let G be a connected graph on $n \ge 2$ vertices which is regularly realizable in \mathbb{R}^2 . Then, the multilinear form Λ_G^{ϵ} is bounded uniformly in ϵ on $L^{p_1}(\mathbb{R}^2) \times \cdots \times L^{p_n}(\mathbb{R}^2)$ for all $(\frac{1}{p_1}, \ldots, \frac{1}{p_n})$ contained in the convex hull of the points

$$\{e_1,\ldots,e_n\}\cup\left\{\frac{2}{3}e_i+\frac{2}{3}e_j\right\}_{\{i,j\}\in E}$$

This paradigm was introduced and studied in the case of some particular small graphs by Bhowmick, Iosevich, Koh and Pham in the finite field setting.

A Falconer type problem for triangles

How large does dim_H(E), for E ⊂ ℝ^d compact, need to be to ensure that the set of triangles

$$D_{\Delta}(E) = \{ (|x_1 - x_2|, |x_1 - x_3|, |x_2 - x_3|) : x_1, x_2, x_3 \in E \}$$

has positive three-dimensional Lebesgue measure?

A Falconer type problem for triangles

How large does dim_H(E), for E ⊂ ℝ^d compact, need to be to ensure that the set of triangles

$$D_{\Delta}(E) = \{ (|x_1 - x_2|, |x_1 - x_3|, |x_2 - x_3|) : x_1, x_2, x_3 \in E \}$$

has positive three-dimensional Lebesgue measure?

Erdoğan and losevich conjecture for triangles in the plane

$$dim_{\mathcal{H}}(E) > rac{3}{2}$$
 in \mathbb{R}^2

• Only know the trivial restriction dim_{\mathcal{H}} $(E) > \frac{d}{2}$ for $d \ge 3$.

Progress on the Falconer type problem for triangles

Grafakos, Greenleaf, Iosevich, P.

• dim_{\mathcal{H}}(E) > $\frac{3}{4}d + \frac{1}{4}$ in \mathbb{R}^d

Greenleaf, Iosevich, Liu, P.

• $\dim_{\mathcal{H}}(E) > \frac{8}{5}$ in \mathbb{R}^2 • $\dim_{\mathcal{H}}(E) > \frac{2d^2}{3d-1}$ in \mathbb{R}^d when $d \ge 2$

Progress on the Falconer type problem for triangles

Grafakos, Greenleaf, Iosevich, P.

• dim_{\mathcal{H}}(E) > $\frac{3}{4}d + \frac{1}{4}$ in \mathbb{R}^d

Greenleaf, Iosevich, Liu, P.

• $\dim_{\mathcal{H}}(E) > \frac{8}{5}$ in \mathbb{R}^2 • $\dim_{\mathcal{H}}(E) > \frac{2d^2}{3d-1}$ in \mathbb{R}^d when $d \ge 2$

Erdoğan, Hart, losevich

► dim_{\mathcal{H}}(E) > $\frac{1}{2}d + \frac{3}{2}$ in \mathbb{R}^d

Iosevich, Pham, Pham, Shen

• dim_{\mathcal{H}}(E) > $\frac{1}{2}d + 1$ in \mathbb{R}^d

Mattila-Sjölin theorems for triangles

Theorem (P, Romero Acosta) Let $E \subset \mathbb{R}^d$, $d \ge 4$, be compact. If $\dim_{\mathcal{H}}(E) > \frac{2}{3}d + 1$ then $D_{\Delta}(E)$ has non-empty interior.

- View $D_{\Delta}(E)$ from side-angle-side.
- Builds on work of losevich and Liu.

Mattila-Sjölin theorems for triangles

Theorem (P, Romero Acosta) Let $E \subset \mathbb{R}^d$, $d \ge 4$, be compact. If $\dim_{\mathcal{H}}(E) > \frac{2}{3}d + 1$ then $D_{\Delta}(E)$ has non-empty interior.

- View $D_{\Delta}(E)$ from side-angle-side.
- Builds on work of losevich and Liu.
- Later matched by Greenleaf, losevich and Taylor.

Mattila-Sjölin theorems for triangles

Theorem (P, Romero Acosta) Let $E \subset \mathbb{R}^d$, $d \ge 4$, be compact. If $\dim_{\mathcal{H}}(E) > \frac{2}{3}d + 1$ then $D_{\Delta}(E)$ has non-empty interior.

- View $D_{\Delta}(E)$ from side-angle-side.
- Builds on work of losevich and Liu.
- Later matched by Greenleaf, losevich and Taylor.

Theorem (P, Romero Acosta)

Let $E \subset \mathbb{R}^3$ be compact. If dim_{\mathcal{H}} $(E) > \frac{23}{8}$ then $D_{\Delta}(E)$ has non-empty interior.

- Classic side-side-side viewpoint.
- Builds on work of losevich and Magyar.
- Extends to simplexes in higher dimensions.

To conclude

 \blacktriangleright Falconer distance problem \leftrightarrow Spherical averaging operator

More complicated configurations

- Interesting operators
- Interesting point configuration problems

To conclude

▶ Falconer distance problem \leftrightarrow Spherical averaging operator

More complicated configurations

Interesting operators

Interesting point configuration problems

Thank you!

Contact me: palsson@vt.edu My website: personal.math.vt.edu/palsson/