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The distance set

I The distance set of E ⊆ Rd is

D(E ) = {|x1 − x2| : x1, x2 ∈ E}

I Steinhaus showed if Ld(E ) > 0 then

E − E := {x1 − x2 : x1, x2 ∈ E}

contains a neighborhood of the origin.

I Immediately implies

Ld(E ) > 0 =⇒ L(D(E )) > 0

and further D(E ) contains an interval.

I Idea: E ⊆ Rd large =⇒ D(E ) large (& structured)
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The Falconer distance problem

I How large does dimH(E ), for E ⊂ Rd , d ≥ 2, need to be to
ensure that L(D(E )) > 0?

I Can construct E ⊂ R with dimH(E ) = 1 such that
L(D(E )) = 0.

I Falconer’s conjecture dimH(E ) > d
2
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Encode dimension with measures

I For a compact set E ⊂ Rd and 0 < s < dimH(E ) there is a
probability measure µ supported on E with

µ(Br ) . r s

for any ball Br of radius r . Call µ a Frostman measure.

I Taking s arbitrarily smaller

Is(µ) =

∫∫
|x−y |−sdµ(x)dµ(y) = cs,d

∫
|µ̂(ξ)|2|ξ|s−ddξ <∞

Call Is(µ) the energy integral of µ.
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Distance measure

I Define the distance measure δ(µ), supported on D(E ), by the
relation∫

f (r) dδ(µ)(r) =

∫∫
f (|x1 − x2|) dµ(x1)dµ(x2)

for any continuous function f , where µ is a Frostman measure
supported on E .

I δ(µ)(D(E )) = 1

I Approximate µ by a smooth function µε and get∫
f (r) dδ(µε)(r) =

∫∫
f (|x1 − x2|)µε(x1)µε(x2)dx1dx2

=

∫
f (r)

(∫
(σr ∗ µε)(x)µε(x)dx

)
dr
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Spherical averaging operator appears

I Distance measure has density given by

δ(µε)(r) =

∫
(σr ∗ µε)(x)µε(x)dx = rd−1 〈Ar (µε), µε〉

where Ar is the spherical averaging operator

Ar (f )(x) =
1

rd−1
(σr ∗ f )(x) =

∫
Sd−1

f (x − ry)dσ(y)
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Many bounds for the spherical averaging operator

I Ar : Lp(Rd)→ Lp(Rd), p ≥ 1, for example

‖Ar (f )‖L1 ≤
∫
Sd−1

‖f ‖L1 dσ(y) = ‖f ‖L1

I Lp improving estimate Ar : L
d+1
d (Rd)→ Ld+1(Rd) adds

Ar : Lp(Rd)→ Lq(Rd)
if and only if(

1
p ,

1
q

)
is within the closed triangle (0, 0), (1, 1),

(
d

d+1 ,
1

d+1

)
.

I Sobolev bounds, such as

Ar : L2
s (Rd)→ L2

s+ d−1
2

(Rd)
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Sobolev bounds show the density is bounded

I Key stationary phase estimate for Sobolev bound

|σ̂(ξ)| =

∣∣∣∣∫ e−2πiy ·ξdσ(y)

∣∣∣∣ . |ξ|− d−1
2

I Yields boundedness of the density if dimH(E ) > d
2 + 1

2

δ(µε)(r) .r ‖Ar (µε)‖1/2

L2
d−1

4

‖µε‖1/2

L2

− d−1
4

≤ ‖µε‖L2

− d−1
4

= I d+1
2

(µε)

I In the limit δ(µ) has density

δ(µ)(r) = rd−1

∫
σ̂(rξ)|µ̂(ξ)|2dξ

which is bounded by the energy integral and continuous in r .

I 1 = δ(µ)(D(E )) =

∫
D(E)

δ(µ)(r)dr ≤ ‖δ(µ)‖L∞ L(D(E ))
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Results on the Falconer distance problem

I First results

I Falconer dimH(E ) > d
2 + 1

2 =⇒ L(D(E )) > 0

I Mattila and Sjölin
dimH(E ) > d

2 + 1
2 =⇒ D(E ) contains an interval

I ‖δ(µ)‖L2 <∞ implies L(D(E )) > 0 (Mattila’s program).

I Wolff and Erdoğan dimH(E ) > d
2 + 1

3 in Rd

I Flurry of improvements recently due to Du, Guth, Iosevich,
Ou, Ren, Wang, Wilson and Zhang.

I dimH(E) >
d
2
+ 1

4
+ 1

8d−4
in Rd

I dimH(E) >
d
2
+ 1

4
in Rd , d ≥ 2 even

I dimH(E) >
d
2
+ 1

4
− 1

8d+4
in Rd , d ≥ 3
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Many interesting point configurations
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A road map

I Can we guarantee Falconer or even Mattila-Sjölin type results
for many distance configuration graphs G in R2?

I Expect to need to handle density of the type

ΛεG (f1, . . . , fn) =

∫
· · ·
∫ ∏
{(i ,j):1≤i<j≤n;E(i ,j)=1}

σε(|xi−xj |)
n∏

i=1

fi (xi )dxi

I Would like Sobolev type bounds for the form.

I Can we even get Lp improving ones?
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Regularly realizable distance configuration graphs

I G graph with with vertices {1, . . . , n} and edge set E

I Let F : R2n → R|E | be the map

F (x1, . . . , xn) = (|xi − xj |)ij for {i , j} ∈ E , i < j

I Set M = F−1(t) where t = (t1, . . . , t|E |).

I Say G is regularly realizable if M 6= ∅ and t is a regular value
of F .

I Examples: Trees and Triangles

I A non-example: Cycle on 4 vertices.

I Regularly realizable generalizes a previous notion of a locally
infinitesimally rigid configuration due to Chatzikonstantinou,
Iosevich, Mkrtchyan and Pakianathan.
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Lp improving estimates are possible

ΛεG (f1, . . . , fn) =

∫
· · ·
∫ ∏
{(i ,j):1≤i<j≤n;E(i ,j)=1}

σε(|x i−x j |)
n∏

i=1

fi (x
i )dx i

Theorem (Iosevich, P, Wyman, Zhai)

Let G be a connected graph on n ≥ 2 vertices which is regularly
realizable in R2. Then, the multilinear form ΛεG is bounded
uniformly in ε on Lp1(R2)× · · · × Lpn(R2) for all ( 1

p1
, . . . , 1

pn
)

contained in the convex hull of the points

{e1, . . . , en} ∪
{

2

3
ei +

2

3
ej

}
{i ,j}∈E

.

I This paradigm was introduced and studied in the case of some
particular small graphs by Bhowmick, Iosevich, Koh and Pham
in the finite field setting.
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A Falconer type problem for triangles

I How large does dimH(E ), for E ⊂ Rd compact, need to be to
ensure that the set of triangles

D∆(E ) = {(|x1 − x2|, |x1 − x3|, |x2 − x3|) : x1, x2, x3 ∈ E}

has positive three-dimensional Lebesgue measure?

I Erdoğan and Iosevich conjecture for triangles in the plane

dimH(E ) >
3

2
in R2

I Only know the trivial restriction dimH(E ) > d
2 for d ≥ 3.
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Progress on the Falconer type problem for triangles
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Mattila-Sjölin theorems for triangles

Theorem (P, Romero Acosta)

Let E ⊂ Rd , d ≥ 4, be compact. If dimH(E ) > 2
3d + 1 then

D∆(E ) has non-empty interior.

I View D∆(E ) from side-angle-side.

I Builds on work of Iosevich and Liu.

I Later matched by Greenleaf, Iosevich and Taylor.

Theorem (P, Romero Acosta)

Let E ⊂ R3 be compact. If dimH(E ) > 23
8 then D∆(E ) has

non-empty interior.

I Classic side-side-side viewpoint.

I Builds on work of Iosevich and Magyar.

I Extends to simplexes in higher dimensions.
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To conclude

I Falconer distance problem ↔ Spherical averaging operator

I More complicated configurations

I Interesting operators

I Interesting point configuration problems

I Thank you!

Contact me: palsson@vt.edu

My website: personal.math.vt.edu/palsson/
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