Distance problems and geometric averaging operators

Eyvindur Ari Palsson

Department of Mathematics Virginia Tech

July 16, 2024

IBS-DIMAG Workshop on Combinatorics and Geometric Measure Theory

The distance set of $E \subseteq \mathbb{R}^d$ is

$$
D(E) = \{ |x_1 - x_2| : x_1, x_2 \in E \}
$$

The distance set of $E \subseteq \mathbb{R}^d$ is

$$
D(E) = \{ |x_1 - x_2| : x_1, x_2 \in E \}
$$

Steinhaus showed if $\mathcal{L}^d(E) > 0$ then

$$
E - E := \{x_1 - x_2 : x_1, x_2 \in E\}
$$

contains a neighborhood of the origin.

The distance set of $E \subseteq \mathbb{R}^d$ is

$$
D(E) = \{ |x_1 - x_2| : x_1, x_2 \in E \}
$$

$$
\blacktriangleright
$$
 Steinhaus showed if $\mathcal{L}^d(E) > 0$ then

$$
E - E := \{x_1 - x_2 : x_1, x_2 \in E\}
$$

contains a neighborhood of the origin.

 \blacktriangleright Immediately implies

$$
\mathcal{L}^d(E) > 0 \implies \mathcal{L}(D(E)) > 0
$$

and further $D(E)$ contains an interval.

The distance set of $E \subseteq \mathbb{R}^d$ is

$$
D(E) = \{ |x_1 - x_2| : x_1, x_2 \in E \}
$$

$$
\blacktriangleright
$$
 Steinhaus showed if $\mathcal{L}^d(E) > 0$ then

$$
E - E := \{x_1 - x_2 : x_1, x_2 \in E\}
$$

contains a neighborhood of the origin.

$$
\blacktriangleright
$$
 Immediately implies

$$
\mathcal{L}^d(E) > 0 \implies \mathcal{L}(D(E)) > 0
$$

and further $D(E)$ contains an interval.

• Idea:
$$
E \subseteq \mathbb{R}^d
$$
 large $\implies D(E)$ large (& structured)

The Falconer distance problem

▶ How large does $\dim_{\mathcal{H}}(E)$, for $E\subset \mathbb{R}^d$, $d\geq 2$, need to be to ensure that $\mathcal{L}(D(E)) > 0$?

The Falconer distance problem

- ▶ How large does $\dim_{\mathcal{H}}(E)$, for $E\subset \mathbb{R}^d$, $d\geq 2$, need to be to ensure that $\mathcal{L}(D(E)) > 0$?
- ► Can construct $E \subset \mathbb{R}$ with $\dim_{\mathcal{H}}(E) = 1$ such that $\mathcal{L}(D(E)) = 0.$

The Falconer distance problem

- ▶ How large does $\dim_{\mathcal{H}}(E)$, for $E\subset \mathbb{R}^d$, $d\geq 2$, need to be to ensure that $\mathcal{L}(D(E)) > 0$?
- ► Can construct $E \subset \mathbb{R}$ with $\dim_{\mathcal{H}}(E) = 1$ such that $\mathcal{L}(D(E)) = 0.$
- **Falconer's conjecture dim** $H(E) > \frac{d}{2}$ 2

Encode dimension with measures

▶ For a compact set $E \subset \mathbb{R}^d$ and $0 < s < \dim_{\mathcal{H}}(E)$ there is a probability measure μ supported on E with

 $\mu(B_r)\lesssim r^s$

for any ball B_r of radius r. Call μ a Frostman measure.

Encode dimension with measures

▶ For a compact set $E \subset \mathbb{R}^d$ and $0 < s < \dim_{\mathcal{H}}(E)$ there is a probability measure μ supported on E with

 $\mu(B_r)\lesssim r^s$

for any ball B_r of radius r. Call μ a Frostman measure.

\blacktriangleright Taking s arbitrarily smaller

$$
I_{\mathsf{s}}(\mu) = \iint |x-y|^{-\mathsf{s}} d\mu(x) d\mu(y) = c_{\mathsf{s},d} \int |\widehat{\mu}(\xi)|^2 |\xi|^{\mathsf{s}-d} d\xi < \infty
$$

Call $I_{s}(\mu)$ the energy integral of μ .

Distance measure

 \blacktriangleright Define the distance measure $\delta(\mu)$, supported on $D(E)$, by the relation

$$
\int f(r) d\delta(\mu)(r) = \iint f(|x_1 - x_2|) d\mu(x_1) d\mu(x_2)
$$

for any continuous function f, where μ is a Frostman measure supported on E.

Distance measure

 \blacktriangleright Define the distance measure $\delta(\mu)$, supported on $D(E)$, by the relation

$$
\int f(r) d\delta(\mu)(r) = \iint f(|x_1-x_2|) d\mu(x_1) d\mu(x_2)
$$

for any continuous function f, where μ is a Frostman measure supported on E.

$$
\blacktriangleright \delta(\mu)(D(E))=1
$$

Distance measure

 \blacktriangleright Define the distance measure $\delta(\mu)$, supported on $D(E)$, by the relation

$$
\int f(r) d\delta(\mu)(r) = \iint f(|x_1-x_2|) d\mu(x_1) d\mu(x_2)
$$

for any continuous function f, where μ is a Frostman measure supported on E.

$$
\blacktriangleright \delta(\mu)(D(E))=1
$$

Approximate μ by a smooth function μ_{ϵ} and get

$$
\int f(r) d\delta(\mu_{\epsilon})(r) = \iint f(|x_1 - x_2|) \mu_{\epsilon}(x_1) \mu_{\epsilon}(x_2) dx_1 dx_2
$$

$$
= \int f(r) \left(\int (\sigma_r * \mu_{\epsilon})(x) \mu_{\epsilon}(x) dx \right) dr
$$

Spherical averaging operator appears

 \triangleright Distance measure has density given by

$$
\delta(\mu_{\epsilon})(r) = \int (\sigma_r * \mu_{\epsilon})(x) \mu_{\epsilon}(x) dx = r^{d-1} \langle A_r(\mu_{\epsilon}), \mu_{\epsilon} \rangle
$$

where A_r is the spherical averaging operator

$$
A_r(f)(x)=\frac{1}{r^{d-1}}(\sigma_r*f)(x)=\int_{\mathbb{S}^{d-1}}f(x-ry)d\sigma(y)
$$

Many bounds for the spherical averaging operator

$$
\blacktriangleright A_r: L^p(\mathbb{R}^d) \to L^p(\mathbb{R}^d), \ p \ge 1, \text{ for example}
$$

$$
||A_r(f)||_{L^1} \le \int_{\mathbb{S}^{d-1}} ||f||_{L^1} d\sigma(y) = ||f||_{L^1}
$$

Many bounds for the spherical averaging operator

$$
\triangleright A_r: L^p(\mathbb{R}^d) \to L^p(\mathbb{R}^d), p \ge 1, \text{ for example}
$$

$$
||A_r(f)||_{L^1} \le \int_{\mathbb{S}^{d-1}} ||f||_{L^1} d\sigma(y) = ||f||_{L^1}
$$

▶ L^p improving estimate $A_r: L^{\frac{d+1}{d}}(\mathbb{R}^d) \to L^{d+1}(\mathbb{R}^d)$ adds $A_r: L^p(\mathbb{R}^d) \rightarrow L^q(\mathbb{R}^d)$ if and only if $\left(\frac{1}{2}\right)$ $\frac{1}{p},\frac{1}{q}$ $\frac{1}{q}$) is within the closed triangle $(0,0)$, $(1,1)$, $\left(\frac{d}{d+1},\frac{1}{d+1}\right)$. Many bounds for the spherical averaging operator

$$
\triangleright A_r: L^p(\mathbb{R}^d) \to L^p(\mathbb{R}^d), p \ge 1, \text{ for example}
$$

$$
||A_r(f)||_{L^1} \le \int_{\mathbb{S}^{d-1}} ||f||_{L^1} d\sigma(y) = ||f||_{L^1}
$$

▶ L^p improving estimate $A_r: L^{\frac{d+1}{d}}(\mathbb{R}^d) \to L^{d+1}(\mathbb{R}^d)$ adds $A_r: L^p(\mathbb{R}^d) \rightarrow L^q(\mathbb{R}^d)$ if and only if $\left(\frac{1}{2}\right)$ $\frac{1}{p},\frac{1}{q}$ $\frac{1}{q}$) is within the closed triangle $(0,0)$, $(1,1)$, $\left(\frac{d}{d+1},\frac{1}{d+1}\right)$.

 \blacktriangleright Sobolev bounds, such as

$$
A_r: L^2_s(\mathbb{R}^d) \to L^2_{s+\frac{d-1}{2}}(\mathbb{R}^d)
$$

 \blacktriangleright Key stationary phase estimate for Sobolev bound

$$
|\widehat{\sigma}(\xi)| = \left| \int e^{-2\pi i y \cdot \xi} d\sigma(y) \right| \lesssim |\xi|^{-\frac{d-1}{2}}
$$

 \blacktriangleright Key stationary phase estimate for Sobolev bound

$$
|\widehat{\sigma}(\xi)| = \left| \int e^{-2\pi i y \cdot \xi} d\sigma(y) \right| \lesssim |\xi|^{-\frac{d-1}{2}}
$$

 \blacktriangleright Yields boundedness of the density if $\dim_{\mathcal{H}}(E) > \frac{d}{2} + \frac{1}{2}$ 2

$$
\delta(\mu_{\epsilon})(r) \lesssim_{r} \|A_{r}(\mu_{\epsilon})\|_{L_{\frac{d-1}{4}}}^{1/2} \|\mu_{\epsilon}\|_{L_{\frac{d-1}{4}}}^{1/2} \leq \|\mu_{\epsilon}\|_{L_{\frac{d-1}{4}}}^{2} = I_{\frac{d+1}{2}}(\mu_{\epsilon})
$$

 \blacktriangleright Key stationary phase estimate for Sobolev bound

$$
|\widehat{\sigma}(\xi)| = \left| \int e^{-2\pi i y \cdot \xi} d\sigma(y) \right| \lesssim |\xi|^{-\frac{d-1}{2}}
$$

 \blacktriangleright Yields boundedness of the density if $\dim_{\mathcal{H}}(E) > \frac{d}{2} + \frac{1}{2}$ 2

$$
\delta(\mu_{\epsilon})(r) \lesssim_r \|\mathcal{A}_r(\mu_{\epsilon})\|_{L^2_{\frac{d-1}{4}}}^{1/2} \|\mu_{\epsilon}\|_{L^2_{-\frac{d-1}{4}}}^{1/2} \leq \|\mu_{\epsilon}\|_{L^2_{-\frac{d-1}{4}}} = I_{\frac{d+1}{2}}(\mu_{\epsilon})
$$

In the limit $\delta(\mu)$ has density

$$
\delta(\mu)(r) = r^{d-1} \int \widehat{\sigma}(r\xi) |\widehat{\mu}(\xi)|^2 d\xi
$$

which is bounded by the energy integral and continuous in r .

 \blacktriangleright Key stationary phase estimate for Sobolev bound

$$
|\widehat{\sigma}(\xi)| = \left| \int e^{-2\pi i y \cdot \xi} d\sigma(y) \right| \lesssim |\xi|^{-\frac{d-1}{2}}
$$

 \blacktriangleright Yields boundedness of the density if $\dim_{\mathcal{H}}(E) > \frac{d}{2} + \frac{1}{2}$ 2

$$
\delta(\mu_{\epsilon})(r) \lesssim_r \Vert A_r(\mu_{\epsilon}) \Vert_{L^2_{\frac{d-1}{4}}}^{1/2} \Vert \mu_{\epsilon} \Vert_{L^2_{-\frac{d-1}{4}}}^{1/2} \leq \Vert \mu_{\epsilon} \Vert_{L^2_{-\frac{d-1}{4}}} = I_{\frac{d+1}{2}}(\mu_{\epsilon})
$$

In the limit $\delta(\mu)$ has density

$$
\delta(\mu)(r) = r^{d-1} \int \widehat{\sigma}(r\xi) |\widehat{\mu}(\xi)|^2 d\xi
$$

which is bounded by the energy integral and continuous in r .

$$
\blacktriangleright 1 = \delta(\mu)(D(E)) = \int_{D(E)} \delta(\mu)(r) dr \leq ||\delta(\mu)||_{L^{\infty}} \mathcal{L}(D(E))
$$

$$
\blacktriangleright \text{ Falconer dim}_{\mathcal{H}}(E) > \frac{d}{2} + \frac{1}{2} \implies \mathcal{L}(D(E)) > 0
$$

► Mattila and Sjölin

$$
\dim_{\mathcal{H}}(E) > \frac{d}{2} + \frac{1}{2} \implies D(E) \text{ contains an interval}
$$

- ▶ Falconer dim_H(E) > $\frac{d}{2} + \frac{1}{2}$ = \Rightarrow $\mathcal{L}(D(E)) > 0$
- \blacktriangleright Mattila and Sjölin $\dim_{\mathcal{H}}(E) > \frac{d}{2} + \frac{1}{2} \implies D(E)$ contains an interval
- $\| \delta(\mu) \|_{L^2} < \infty$ implies $\mathcal{L}(D(E)) > 0$ (Mattila's program).
	- \blacktriangleright Wolff and Erdoğan dim $\mathcal{H}(E) > \frac{d}{2} + \frac{1}{3}$ in \mathbb{R}^d

- ▶ Falconer dim_H(E) > $\frac{d}{2} + \frac{1}{2}$ = \Rightarrow $\mathcal{L}(D(E)) > 0$
- \blacktriangleright Mattila and Sjölin $\dim_{\mathcal{H}}(E) > \frac{d}{2} + \frac{1}{2} \implies D(E)$ contains an interval
- $\| \delta(\mu) \|_{L^2} < \infty$ implies $\mathcal{L}(D(E)) > 0$ (Mattila's program).
	- \blacktriangleright Wolff and Erdoğan dim $\mathcal{H}(E) > \frac{d}{2} + \frac{1}{3}$ in \mathbb{R}^d
	- \blacktriangleright Flurry of improvements recently due to Du, Guth, losevich, Ou, Ren, Wang, Wilson and Zhang.

$$
\bullet \ \dim_{\mathcal{H}}(E) > \frac{d}{2} + \frac{1}{4} + \frac{1}{8d-4} \text{ in } \mathbb{R}^d
$$

- ▶ Falconer dim_H(E) > $\frac{d}{2} + \frac{1}{2}$ = \Rightarrow $\mathcal{L}(D(E)) > 0$
- \blacktriangleright Mattila and Sjölin $\dim_{\mathcal{H}}(E) > \frac{d}{2} + \frac{1}{2} \implies D(E)$ contains an interval
- $\| \delta(\mu) \|_{L^2} < \infty$ implies $\mathcal{L}(D(E)) > 0$ (Mattila's program).
	- \blacktriangleright Wolff and Erdoğan dim $\mathcal{H}(E) > \frac{d}{2} + \frac{1}{3}$ in \mathbb{R}^d
	- \blacktriangleright Flurry of improvements recently due to Du, Guth, losevich, Ou, Ren, Wang, Wilson and Zhang.
		- dim $\mathcal{H}(E) > \frac{d}{2} + \frac{1}{4} + \frac{1}{8d-4}$ in \mathbb{R}^d
		- In $\dim_{\mathcal{H}}(E) > \frac{d}{2} + \frac{1}{4}$ in \mathbb{R}^d , $d \ge 2$ even

- ▶ Falconer dim_H(E) > $\frac{d}{2} + \frac{1}{2}$ = \Rightarrow $\mathcal{L}(D(E)) > 0$
- \blacktriangleright Mattila and Sjölin $\dim_{\mathcal{H}}(E) > \frac{d}{2} + \frac{1}{2} \implies D(E)$ contains an interval
- $\| \delta(\mu) \|_{L^2} < \infty$ implies $\mathcal{L}(D(E)) > 0$ (Mattila's program).
	- \blacktriangleright Wolff and Erdoğan dim $\mathcal{H}(E) > \frac{d}{2} + \frac{1}{3}$ in \mathbb{R}^d
	- \blacktriangleright Flurry of improvements recently due to Du, Guth, losevich, Ou, Ren, Wang, Wilson and Zhang.
		- dim $\mathcal{H}(E) > \frac{d}{2} + \frac{1}{4} + \frac{1}{8d-4}$ in \mathbb{R}^d
		- In $\dim_{\mathcal{H}}(E) > \frac{d}{2} + \frac{1}{4}$ in \mathbb{R}^d , $d \ge 2$ even
		- dim $\mathcal{H}(E) > \frac{d}{2} + \frac{1}{4} \frac{1}{8d+4}$ in \mathbb{R}^d , $d \ge 3$

Many interesting point configurations

▶ Can we guarantee Falconer or even Mattila-Sjölin type results for many distance configuration graphs G in \mathbb{R}^2 ?

- ▶ Can we guarantee Falconer or even Mattila-Sjölin type results for many distance configuration graphs G in \mathbb{R}^2 ?
- \blacktriangleright Expect to need to handle density of the type

$$
\Lambda_G^{\epsilon}(f_1,\ldots,f_n)=\int\cdots\int\prod_{\{(i,j):1\leq i
$$

- ▶ Can we guarantee Falconer or even Mattila-Sjölin type results for many distance configuration graphs G in \mathbb{R}^2 ?
- \blacktriangleright Expect to need to handle density of the type

$$
\Lambda_G^{\epsilon}(f_1,\ldots,f_n)=\int\cdots\int\prod_{\{(i,j):1\leq i
$$

 \triangleright Would like Sobolev type bounds for the form.

- ▶ Can we guarantee Falconer or even Mattila-Sjölin type results for many distance configuration graphs G in \mathbb{R}^2 ?
- \blacktriangleright Expect to need to handle density of the type

$$
\Lambda_G^{\epsilon}(f_1,\ldots,f_n)=\int\cdots\int\prod_{\{(i,j):1\leq i
$$

- \triangleright Would like Sobolev type bounds for the form.
- ightharpoonlengt L^p improving ones?

G graph with with vertices $\{1, \ldots, n\}$ and edge set E

Let
$$
F: \mathbb{R}^{2n} \to \mathbb{R}^{|E|}
$$
 be the map

$$
F(x_1,...,x_n) = (|x_i - x_j|)_{ij} \quad \text{for } \{i,j\} \in E, \ i < j
$$

G graph with with vertices $\{1, \ldots, n\}$ and edge set E

Let
$$
F: \mathbb{R}^{2n} \to \mathbb{R}^{|E|}
$$
 be the map

 $F(x_1, ..., x_n) = (|x_i - x_j|)_{ij}$ for $\{i, j\} \in E, i < j$

Set $M = F^{-1}(\mathbf{t})$ where $\mathbf{t} = (t_1, \dots, t_{|E|}).$

G graph with with vertices $\{1, \ldots, n\}$ and edge set E

Let
$$
F: \mathbb{R}^{2n} \to \mathbb{R}^{|E|}
$$
 be the map

 $F(x_1, ..., x_n) = (|x_i - x_j|)_{ij}$ for $\{i, j\} \in E, i < j$

Set $M = F^{-1}(\mathbf{t})$ where $\mathbf{t} = (t_1, \dots, t_{|E|}).$

▶ Say G is regularly realizable if $M \neq \emptyset$ and **t** is a regular value of F.

G graph with with vertices $\{1, \ldots, n\}$ and edge set E

Let
$$
F: \mathbb{R}^{2n} \to \mathbb{R}^{|E|}
$$
 be the map

 $F(x_1, ..., x_n) = (|x_i - x_j|)_{ij}$ for $\{i, j\} \in E, i < j$

Set $M = F^{-1}(\mathbf{t})$ where $\mathbf{t} = (t_1, \dots, t_{|E|}).$

► Say G is regularly realizable if $M \neq \emptyset$ and **t** is a regular value of F.

$$
\blacktriangleright
$$
 Examples: Trees and Triangles

A non-example: Cycle on 4 vertices.

G graph with with vertices $\{1, \ldots, n\}$ and edge set E

Let
$$
F: \mathbb{R}^{2n} \to \mathbb{R}^{|E|}
$$
 be the map

 $F(x_1, ..., x_n) = (|x_i - x_j|)_{ij}$ for $\{i, j\} \in E, i < j$

Set $M = F^{-1}(\mathbf{t})$ where $\mathbf{t} = (t_1, \dots, t_{|E|}).$

► Say G is regularly realizable if $M \neq \emptyset$ and **t** is a regular value of F.

$$
\blacktriangleright
$$
 Examples: Trees and Triangles

- A non-example: Cycle on 4 vertices.
- \triangleright Regularly realizable generalizes a previous notion of a locally infinitesimally rigid configuration due to Chatzikonstantinou, Iosevich, Mkrtchyan and Pakianathan.

 L^p improving estimates are possible

$$
\Lambda_G^{\epsilon}(f_1,\ldots,f_n)=\int\cdots\int\prod_{\{(i,j):1\leq i
$$

Theorem (Iosevich, P, Wyman, Zhai)

Let G be a connected graph on $n > 2$ vertices which is regularly realizable in \mathbb{R}^2 . Then, the multilinear form Λ_G^ϵ is bounded uniformly in ϵ on $L^{p_1}(\mathbb{R}^2) \times \cdots \times L^{p_n}(\mathbb{R}^2)$ for all $\left(\frac{1}{p_1}\right)$ $\frac{1}{p_1},\ldots,\frac{1}{p_r}$ $\frac{1}{p_n}$ contained in the convex hull of the points

$$
\{e_1,\ldots,e_n\}\cup\left\{\frac{2}{3}e_i+\frac{2}{3}e_j\right\}_{\{i,j\}\in E}
$$

.

L^p improving estimates are possible

$$
\Lambda_G^{\epsilon}(f_1,\ldots,f_n)=\int\cdots\int\prod_{\{(i,j):1\leq i
$$

Theorem (Iosevich, P, Wyman, Zhai)

Let G be a connected graph on $n \geq 2$ vertices which is regularly realizable in \mathbb{R}^2 . Then, the multilinear form Λ_G^ϵ is bounded uniformly in ϵ on $L^{p_1}(\mathbb{R}^2) \times \cdots \times L^{p_n}(\mathbb{R}^2)$ for all $\left(\frac{1}{p_1}\right)$ $\frac{1}{p_1},\ldots,\frac{1}{p_r}$ $\frac{1}{p_n}$ contained in the convex hull of the points

$$
\{e_1,\ldots,e_n\}\cup\left\{\frac{2}{3}e_i+\frac{2}{3}e_j\right\}_{\{i,j\}\in E}
$$

.

 \triangleright This paradigm was introduced and studied in the case of some particular small graphs by Bhowmick, Iosevich, Koh and Pham in the finite field setting.

A Falconer type problem for triangles

▶ How large does $\dim_{\mathcal{H}}(E)$, for $E \subset \mathbb{R}^d$ compact, need to be to ensure that the set of triangles

$$
D_{\Delta}(E)=\{(|x_1-x_2|,|x_1-x_3|,|x_2-x_3|):x_1,x_2,x_3\in E\}
$$

has positive three-dimensional Lebesgue measure?

A Falconer type problem for triangles

▶ How large does $\dim_{\mathcal{H}}(E)$, for $E \subset \mathbb{R}^d$ compact, need to be to ensure that the set of triangles

$$
D_{\Delta}(E) = \{(|x_1 - x_2|, |x_1 - x_3|, |x_2 - x_3|): x_1, x_2, x_3 \in E\}
$$

has positive three-dimensional Lebesgue measure?

 \blacktriangleright Erdoğan and losevich conjecture for triangles in the plane

$$
dim_{\mathcal{H}}(E) > \frac{3}{2}
$$
 in \mathbb{R}^2

• Only know the trivial restriction dim $H(E) > \frac{d}{2}$ $rac{d}{2}$ for $d \geq 3$.

Progress on the Falconer type problem for triangles

 \blacktriangleright Grafakos, Greenleaf, Iosevich, P.

• dim_{$H(E) > \frac{3}{4}d + \frac{1}{4}$ in \mathbb{R}^d}

 \blacktriangleright Greenleaf, Iosevich, Liu, P.

• dim_{$H(E) > \frac{8}{5}$ in \mathbb{R}^2}

$$
\blacktriangleright \dim_{\mathcal{H}}(E) > \frac{2d^2}{3d-1} \text{ in } \mathbb{R}^d \text{ when } d \geq 2
$$

Progress on the Falconer type problem for triangles

I Grafakos, Greenleaf, Iosevich, P.

$$
\blacktriangleright \dim_{\mathcal{H}}(E) > \frac{3}{4}d + \frac{1}{4} \text{ in } \mathbb{R}^d
$$

 \blacktriangleright Greenleaf, Iosevich, Liu, P. • dim_{$H(E) > \frac{8}{5}$ in \mathbb{R}^2}

$$
\blacktriangleright \dim_{\mathcal{H}}(E) > \frac{2d^2}{3d-1} \text{ in } \mathbb{R}^d \text{ when } d \geq 2
$$

▶ Erdoğan, Hart, Iosevich

$$
\blacktriangleright \dim_{\mathcal{H}}(E) > \frac{1}{2}d + \frac{3}{2} \text{ in } \mathbb{R}^d
$$

I Iosevich, Pham, Pham, Shen

$$
\blacktriangleright \dim_{\mathcal{H}}(E) > \frac{1}{2}d + 1 \text{ in } \mathbb{R}^d
$$

Mattila-Sjölin theorems for triangles

Theorem (P, Romero Acosta) Let $E\subset \mathbb{R}^d$, $d\geq 4$, be compact. If $\dim_{\mathcal{H}}(E)>\frac{2}{3}$ $\frac{2}{3}$ d + 1 then $D_{\Lambda}(E)$ has non-empty interior.

- \triangleright View $D_{\Delta}(E)$ from side-angle-side.
- \blacktriangleright Builds on work of losevich and Liu.

Mattila-Sjölin theorems for triangles

Theorem (P, Romero Acosta) Let $E\subset \mathbb{R}^d$, $d\geq 4$, be compact. If $\dim_{\mathcal{H}}(E)>\frac{2}{3}$ $\frac{2}{3}$ d + 1 then $D_{\Lambda}(E)$ has non-empty interior.

- \triangleright View $D_{\Delta}(E)$ from side-angle-side.
- \triangleright Builds on work of losevich and Liu.
- \blacktriangleright Later matched by Greenleaf, losevich and Taylor.

Mattila-Sjölin theorems for triangles

Theorem (P, Romero Acosta) Let $E\subset \mathbb{R}^d$, $d\geq 4$, be compact. If $\dim_{\mathcal{H}}(E)>\frac{2}{3}$ $\frac{2}{3}$ d + 1 then $D_{\Lambda}(E)$ has non-empty interior.

- \triangleright View $D_{\Delta}(E)$ from side-angle-side.
- \triangleright Builds on work of losevich and Liu.
- \blacktriangleright Later matched by Greenleaf, losevich and Taylor.

Theorem (P, Romero Acosta)

Let $E \subset \mathbb{R}^3$ be compact. If $\dim_{\mathcal{H}}(E) > \frac{23}{8}$ $rac{23}{8}$ then $D_{\Delta}(E)$ has non-empty interior.

- \blacktriangleright Classic side-side-side viewpoint.
- \blacktriangleright Builds on work of losevich and Magyar.
- \blacktriangleright Extends to simplexes in higher dimensions.

To conclude

 \triangleright Falconer distance problem \leftrightarrow Spherical averaging operator

 \blacktriangleright More complicated configurations

- \blacktriangleright Interesting operators
- \blacktriangleright Interesting point configuration problems

To conclude

 \triangleright Falconer distance problem \leftrightarrow Spherical averaging operator

 \blacktriangleright More complicated configurations

 \blacktriangleright Interesting operators

 \blacktriangleright Interesting point configuration problems

 \blacktriangleright Thank you!

Contact me: palsson@vt.edu My website: <personal.math.vt.edu/palsson/>