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Tiling the integers
with translates of one finite tile:

an introduction



Tiling the integers with translates of one finite set

Let A ⊂ Z be a finite set. We say that A tiles Z by translations
if Z can be covered by a union of disjoint translates of A.

A = {0, 2}

A = {0, 4, 8}

A = {0, 1, 3}

A = {0, 2} and A = {0, 4, 8} tile Z; A = {0, 1, 3} does not.

How to determine whether a given A tiles the integers?
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Periodicity and reductions

Periodicity

All tilings of Z by a finite set A are periodic. Reduces the
problem to tilings of finite cyclic groups A⊕B = ZM with
addition mod M . (Newman)

Prime factors reduction

We may assume that M has the same prime factors as |A|.
(Coven-Meyerowitz, based on a theorem of Tijdeman)
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Basic tools:

• Chinese Remainder Theorem (provides a multidimensional
geometric representation),

• Mask polynomials of sets,

• Cyclotomic polynomials.



Geometric representation via Chinese Remainder
Theorem

Suppose that M =
∏d

i=1 p
ni
i , pi distinct primes, ni ≥ 1. We may

represent the cyclic group ZM = {0, 1, . . . ,M − 1} mod M as

ZM = Zp
n1
1

⊕ · · · ⊕ Zpd
nd

x = x1M/pn1
1 + · · · + xdM/pnd

d

Geometrically, this is a d-dimensional periodic lattice with
multiple scales. It will be important that the periods in
different directions are powers of distinct primes.



Geometric representation of sets

Numbers a ∈ ZM are represented as lattice points.

A = {0,M/pi, 2M/pi, . . . , (pi − 1)M/pi}

︸︷︷︸ M/pi
︸︷︷︸M/pj

︸︷︷︸M/pk

0

A = {x ∈ ZM : M/pipj |x}

︸︷︷︸ M/pi
︸︷︷︸M/pj

︸︷︷︸M/pk

0



In this representation:

With M =
∏d

i=1 p
ni
i , we represent ZM as a d-dimensional lattice

ZM = Zp
n1
1

⊕ · · · ⊕ Zpd
nd .

Then A⊕B = ZM is a tiling of that lattice (note the
periodicity conditions!)



Examples of tilings

M/pi︷︸︸︷

M/p2j

{

{

{ A B
M/p2i

M/pj



Cyclotomic polynomials:

The s-th cyclotomic polynomial is the unique monic, irreducible
polynomial Φs(X) whose roots are the primitive s-th roots of
unity. Alternatively, Φs can be defined inductively via

Xn − 1 =
∏
s|n

Φs(X).

To initialize, X − 1 = Φ1(X), and then...



Cyclotomic polynomials:

X2 − 1 = (X − 1)︸ ︷︷ ︸
Φ1

(X + 1)︸ ︷︷ ︸
Φ2

X3 − 1 = (X − 1)︸ ︷︷ ︸
Φ1

(X2 + X + 1)︸ ︷︷ ︸
Φ3

X6 − 1 = (X3 − 1)(X3 + 1)

= (X − 1)︸ ︷︷ ︸
Φ1

(X2 + X + 1)︸ ︷︷ ︸
Φ3

(X + 1)︸ ︷︷ ︸
Φ2

(X2 −X + 1)︸ ︷︷ ︸
Φ6
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Polynomial formulation of tiling

We may assume that A,B ⊂ {0, 1, . . . }. Define the mask
polynomials

A(X) =
∑
a∈A

Xa, B(X) =
∑
b∈B

Xb.

Then A⊕B = ZM is equivalent to

A(X)B(X) = 1 + X + · · · + XM−1 mod (XM − 1).

Equivalently, |A||B| = M and each Φs(X) with s|M , s ̸= 1,
divides at least one of A(X) and B(X).



The Coven-Meyerowitz tiling conditions



Coven-Meyerowitz tiling conditions

C-M (1998) proposed conditions (T1), (T2) on the distribution
of these cyclotomic factors.

• (T1) is a relatively simple counting condition.

• (T2) is a deeper structural condition, equivalent to saying
that each factor in the tiling may be replaced by a
“standard” tile with a nice lattice-like structure.

Proved (T1) for all tiles, (T2) for tiles with |A| = pαqβ, p, q
prime.

The C-M conjecture (that (T2) holds for all finite tiles) is the
main open problem in the theory of integer tilings.
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Coven-Meyerowitz tiling conditions

Example 1.

Suppose Φ2Φ3|A, and A has no other prime power cyclotomic
divisors. Then A tiles Z if and only if

|A| = 6 and Φ6|A
(in other words, A ≡ {0, 1, 2, 3, 4, 5} mod 6) – proved in C-M

Example 2.

Suppose Φ2Φ3Φ5|A, no other prime power cyclotomic divisors.
(T1)-(T2) say that if A tiles Z, then

A ≡ {0, 1, 2, . . . , 29} mod 30.

We do not know whether this is true.
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Application: Minimal tiling period



Application: minimal tiling period

Assume A tiles Z, and let D = max(A)−min(A). Given a tiling
A⊕ T = Z, what is the minimal period of that tiling? What is
the minimal tiling period among all possible tilings of Z by A?

• Let A = {0, 10, 20}. Then A⊕ {0, 1, . . . , 9} = Z30 and the
minimal period of this tiling is 30.

• But A is also a complete set of residues mod 3. Therefore
A⊕ {0} = Z3, and the minimal tiling period of A
(minimized over all possible tilings) is 3.
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Application: minimal tiling period

Assume A tiles Z, and let D = max(A) − min(A).

• Newman: any tiling of Z by A has period at most 2D.

• Improvements by Kolountzakis, Ruzsa, Biró: ∀ϵ > 0 ∃D(ϵ)
such that if D ≥ D(ϵ), then any tiling of Z by A has period
at most exp(D1/3+ϵ).

• There exist tilings of period at least ec log
2 D/log logD

(Steinberger, improving on earlier work by Kolountzakis).
The tiling period M has prime factors that |A| does not
have.
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Application: minimal tiling period

 Laba-Zakharov 2024: assume A tiles the integers, and let
D = max(A) − min(A). Then:

• A admits a tiling of period at most ec log
2 D/log logD. (Any

tiling where M has the same prime factors as |A| satisfies
this.)

• For any ϵ > 0 there exist tilings of period at least D3/2−ϵ,
with |A| and M having the same prime factors.

If A satisfies (T2), it admits a tiling with period at most 2D.
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T2 results



3-prime result ( Laba-Londner 2021-22)

Theorem. Suppose that A⊕B = ZM , with M =
∏3

i=1 p
2
i .

(This is the simplest case that cannot be reduced to two prime
factors using C-M methods.) Then A and B both satisfy (T2).

Additionally:

• The proof also provides a classification of all tilings of
period M =

∏3
i=1 p

2
i .

• Partial results for more general M ; to complete the proof,
we also need geometric arguments specific to 3 primes, 2
scales. Might go wrong for many distinct prime factors.
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Why are 3 prime factors more difficult?

Sands: If A⊕B = ZM and M has at most 2 distinct prime
factors, then at least one of A,B is contained in a coset of a
proper subgroup of ZM .

This can be used to set up an inductive argument.

If M has 3 or more distinct prime factors, Sands’s theorem no
longer holds. We use a “fiber-shifting” example due to Szabó to
demonstrate this.
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Why are 3 prime factors more difficult?

Let M =
∏

pni
i . A fiber in the pi direction is a translate of

Fi = {0,M/pi, . . . , (pi − 1)M/pi}.
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Why are 3 prime factors more difficult?

Example due to Szabó (1985)

↑

↑

↑

→ → →→ →

→
→

→
→



Resolving tilings with 3 primes

To prove (T2) for M = p21p
2
2p

2
3, we reverse this procedure:

• Find places where we think a fiber has been shifted.

• Find those fibers and shift them back.

• This reduces the tiling to one with a simpler structure.

• Repeat until (T2) is known.



A more recent tiling result ( Laba-Londner 2024)

We prove (T2) for both sets in A⊕B = ZM , assuming that one
of the prime factors of M is large compared to others. For
example, (T2) holds for A and B if:

• M = pn1
1 pn2

2 pn3
3 for any n1, n2, n3 ∈ N, if p1 > pn2−1

2 pn3−1
3 .

(This includes M = pn1
1 p22p

2
3 if p1 > p2p3.)

• M = pn1p
2
2p

2
3p

2
4 for any n ∈ N, if p1 > p2p3p4.



Large prime result: sketch of proof

• Divisor sets and divisor exclusion

• Splitting for fibers

• Large prime implies splitting uniformity

• Splitting uniformity implies tiling reduction



Large prime result: divisor sets

Define Div(A) = {(a− a′,M) : a, a′ ∈ A}, and similarly for B.

Divisor exclusion (Sands)

Let A,B ⊂ ZM . Then A⊕B = ZM if and only if |A| |B| = M
and

Div(A) ∩ Div(B) = {M}.



Large prime result: splitting for fibers

Given a fiber z + Fi, consider the elements of A and B that tile
that fiber:

aν + bν = z + νM/pi, ν = 0, 1, . . . , pi − 1.

Divisor exclusion implies that one of the following happens:

(a) ∀ν ̸= µ, pni
i | aν − aµ and pni−1

i ∥ bν − bµ,

(b) ∀ν ̸= µ, pni
i | bν − bµ and pni−1

i ∥ aν − aµ,

Splitting parity is (A,B) in (a), (B,A) in (b).



Large prime result: splitting for fibers



Large prime implies splitting uniformity

If one of the primes is
large, (B,A) splitting
implies M/pi ∈ Div(A).



Large prime implies splitting uniformity

If one of the primes is
large, (B,A) splitting
implies M/pi ∈ Div(A).

By divisor exclusion,
cannot have that for
both A and B. Therefore
all fibers in the pi
direction split with the
same parity.



Large prime result: splitting uniformity implies tiling
reduction

If the splitting parity is uniform, we can apply the slab
reduction:

• The tiling can be decomposed into pi separate tilings of
ZM/pi .

• (T2) holds for the original tiling if and only if it holds for
the smaller tilings.

• Proceed by induction until (T2) is known.



More general cases with many primes?



More primes?

General fact: high-dimensional tilings are complicated. For
example:

Keller’s conjecture for cube tilings

In any tiling of Rd by translates of the unit cube, there must be
two cubes that share a full (d− 1)-dimensional face.

• True for d ≤ 7 (Perron; Brakensiek-Heule-Mackey-
-Narváez).

• False for d ≥ 8 (Lagarias-Shor, Mackey).



Keller-type properties for integer tilings

Open question: Suppose that A⊕B = ZM . Is it always true
that M/p ∈ Div(A) ∪ Div(B) for some p|M prime?

• Used in the large prime result.

• When M = p21p
2
2p

2
3, we have the stronger result that one of

A,B contains a fiber (used in our T2 proof).

• Bruce- Laba 2024: we use counterexamples to Keller’s
conjecture to construct integer tilings with no fibers in
either set. For T2 with more primes, new methods will be
needed.
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Thank you!



Coven-Meyerowitz theorem

Let SA = {pα : Φpα(X)|A(X)}. Consider the conditions:

(T1) A(1) =
∏

s∈SA
Φs(1),

(T2) if s1, . . . , sk ∈ SA are powers of distinct primes, then
Φs1...sk(X) divides A(X).

Then:

• if A satisfies (T1), (T2), then A tiles Z;

• if A tiles Z then (T1) holds;

• if A tiles Z and |A| has at most two prime factors, then
(T2) holds.



Fuglede’s spectral set conjecture

Conjecture: Assume that Ω ⊂ Rn has non-zero and finite
Lebesgue measure. Then Ω tiles Rn by translations if and only
if L2(Ω) admits an orthogonal basis of exponential functions (Ω
is spectral)



Fuglede’s spectral set conjecture

The conjecture, in its full generality, is false in dimensions n ≥ 3
(Tao, Kolountzakis, Matolcsi, Farkas, Révész, Móra)

But true in many special cases of interest:

• When the translation set is a lattice (Fuglede)

• Convex sets in Rn (Iosevich-Katz-Tao for n = 2;
Greenfeld-Lev for n = 3, Lev-Matolcsi for n ≥ 4).

• Finite group analogue, for groups with simple enough
structure (Malikiosis, Kolountzakis, Iosevich, Mayeli,
Pakianathan, Kiss, Somlai, Viser, Shi, Zhang...)
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Connection to Coven-Meyerowitz tiling conditions

If (T2) holds for all tiles of ZM for some M , then tiling implies
spectrality in ZM . ( Laba)

If C-M conjecture is true, then every bounded tile Ω of R is
spectral. Follows by combining the above with earlier work by
Lagarias-Wang.

Dutkay-Lai: If every spectral set A ⊂ Z satisfies (T1) and (T2),
then every bounded spectral set in R tiles R by translations.
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(T1) and (T2) imply spectrality

Let A ⊂ ZM . Let

Λ =
{∑

s

ks
s

: ks ∈ {0, 1, . . . , p− 1}
}

where s runs over all prime powers s|M such that Φs|A. Try

{e2πiλ : λ ∈ Λ + Z}
as an orthonormal basis for L2(A).

• If A satisfies T1, Λ has the “right” cardinality |Λ| = |A|.
• If A satisfies T2, then the given exponentials are pairwise

orthogonal in L2(A).



New ideas needed for 3 prime factors:

• Suppose ΦM |A. Use this to establish initial structure, at
first only on individual top-level grids.

• For “fibered grids”, try to proceed by induction on scales.

• For “unfibered grids” (as in Szabó’s example), use the
irregularities to recover the rest of the tiling.

• To do all this, we had to develop new tools (box product,
multiscale cuboids, saturating sets...). These tools can be
applied to a range of other questions.


