A short survey of integer tilings

Izabella Łaba

Based on joint work with Benjamin Bruce, Itay Londner, Dmitrii Zakharov

July 2024

- 4 回 ト 4 注 ト 4 注 ト

3

Tiling the integers with translates of one finite tile: an introduction

ъ.

Tiling the integers with translates of one finite set

Let $A \subset \mathbb{Z}$ be a finite set. We say that A tiles \mathbb{Z} by translations if \mathbb{Z} can be covered by a union of disjoint translates of A.

Tiling the integers with translates of one finite set

Let $A \subset \mathbb{Z}$ be a finite set. We say that A tiles \mathbb{Z} by translations if \mathbb{Z} can be covered by a union of disjoint translates of A.

 $A = \{0, 2\}$ and $A = \{0, 4, 8\}$ tile \mathbb{Z} ; $A = \{0, 1, 3\}$ does not. How to determine whether a given A tiles the integers?

Periodicity and reductions

Periodicity

All tilings of \mathbb{Z} by a finite set A are periodic. Reduces the problem to tilings of finite cyclic groups $A \oplus B = \mathbb{Z}_M$ with addition mod M. (Newman)

・ 同 ト ・ ヨ ト ・ ヨ ト

Periodicity and reductions

Periodicity

All tilings of \mathbb{Z} by a finite set A are periodic. Reduces the problem to tilings of finite cyclic groups $A \oplus B = \mathbb{Z}_M$ with addition mod M. (Newman)

Prime factors reduction

We may assume that M has the same prime factors as |A|. (Coven-Meyerowitz, based on a theorem of Tijdeman)

Basic tools:

• Chinese Remainder Theorem (provides a multidimensional geometric representation),

・ 「 ト ・ ヨ ト ・

- $\mathcal{C}_{\mathcal{C}}$

Geometric representation via Chinese Remainder Theorem

Suppose that $M = \prod_{i=1}^{d} p_i^{n_i}$, p_i distinct primes, $n_i \ge 1$. We may represent the cyclic group $\mathbb{Z}_M = \{0, 1, \dots, M-1\} \mod M$ as

$$\mathbb{Z}_M = \mathbb{Z}_{p_1^{n_1}} \oplus \cdots \oplus \mathbb{Z}_{p_d^{n_d}}$$

$$x = x_1 M / p_1^{n_1} + \dots + x_d M / p_d^{n_d}$$

Geometrically, this is a *d*-dimensional periodic lattice with multiple scales. It will be important that the periods in different directions are powers of distinct primes.

Geometric representation of sets

Numbers $a \in \mathbb{Z}_M$ are represented as lattice points.

With $M = \prod_{i=1}^{d} p_i^{n_i}$, we represent \mathbb{Z}_M as a *d*-dimensional lattice $\mathbb{Z}_M = \mathbb{Z}_{p_1^{n_1}} \oplus \cdots \oplus \mathbb{Z}_{p_d^{n_d}}.$

Then $A \oplus B = \mathbb{Z}_M$ is a tiling of that lattice (note the periodicity conditions!)

Examples of tilings

В•

999

$(A_{ij}) = (A_{ij}) (A_{ij})$

The s-th cyclotomic polynomial is the unique monic, irreducible polynomial $\Phi_s(X)$ whose roots are the primitive s-th roots of unity. Alternatively, Φ_s can be defined inductively via

$$X^n - 1 = \prod_{s|n} \Phi_s(X).$$

To initialize, $X - 1 = \Phi_1(X)$, and then...

Cyclotomic polynomials:

$$X^2 - 1 = \underbrace{(X-1)}_{\Phi_1} \underbrace{(X+1)}_{\Phi_2}$$

$$X^{2} - 1 = \underbrace{(X - 1)}_{\Phi_{1}} \underbrace{(X + 1)}_{\Phi_{2}}$$

$$X^{3} - 1 = \underbrace{(X - 1)}_{\Phi_{1}} \underbrace{(X^{2} + X + 1)}_{\Phi_{3}}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

. \

$$X^{2} - 1 = \underbrace{(X - 1)}_{\Phi_{1}} \underbrace{(X + 1)}_{\Phi_{2}}$$
$$X^{3} - 1 = \underbrace{(X - 1)}_{\Phi_{1}} \underbrace{(X^{2} + X + 1)}_{\Phi_{3}}$$
$$X^{6} - 1 = (X^{3} - 1)(X^{3} + 1)$$
$$= \underbrace{(X - 1)}_{\Phi_{1}} \underbrace{(X^{2} + X + 1)}_{\Phi_{3}} \underbrace{(X + 1)}_{\Phi_{2}} \underbrace{(X^{2} - X + 1)}_{\Phi_{6}}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Polynomial formulation of tiling

We may assume that $A, B \subset \{0, 1, ...\}$. Define the mask polynomials

$$A(X) = \sum_{a \in A} X^a, \ B(X) = \sum_{b \in B} X^b.$$

Then $A \oplus B = \mathbb{Z}_M$ is equivalent to

$$A(X)B(X) = 1 + X + \dots + X^{M-1} \mod (X^M - 1).$$

Equivalently, |A||B| = M and each $\Phi_s(X)$ with $s|M, s \neq 1$, divides at least one of A(X) and B(X).

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● のへで

C-M (1998) proposed conditions (T1), (T2) on the distribution of these cyclotomic factors.

- (T1) is a relatively simple counting condition.
- (T2) is a deeper structural condition, equivalent to saying that each factor in the tiling may be replaced by a "standard" tile with a nice lattice-like structure.

Proved (T1) for all tiles, (T2) for tiles with $|A| = p^{\alpha}q^{\beta}$, p, q prime.

C-M (1998) proposed conditions (T1), (T2) on the distribution of these cyclotomic factors.

- (T1) is a relatively simple counting condition.
- (T2) is a deeper structural condition, equivalent to saying that each factor in the tiling may be replaced by a "standard" tile with a nice lattice-like structure.

Proved (T1) for all tiles, (T2) for tiles with $|A| = p^{\alpha}q^{\beta}$, p, q prime.

The **C-M conjecture** (that (T2) holds for all finite tiles) is the main open problem in the theory of integer tilings.

Example 1.

Suppose $\Phi_2 \Phi_3 | A$, and A has no other prime power cyclotomic divisors. Then A tiles \mathbb{Z} if and only if

|A| = 6 and $\Phi_6|A|$

(日) (四) (王) (王) (王)

(in other words, $A \equiv \{0, 1, 2, 3, 4, 5\} \mod 6$) – proved in C-M

Example 1.

Suppose $\Phi_2 \Phi_3 | A$, and A has no other prime power cyclotomic divisors. Then A tiles \mathbb{Z} if and only if

|A| = 6 and $\Phi_6|A|$

(in other words, $A \equiv \{0, 1, 2, 3, 4, 5\} \mod 6$) – proved in C-M

Example 2.

Suppose $\Phi_2 \Phi_3 \Phi_5 | A$, no other prime power cyclotomic divisors. (T1)-(T2) say that if A tiles \mathbb{Z} , then

We do not know whether this is true.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● のへで

Assume A tiles \mathbb{Z} , and let $D = \max(A) - \min(A)$. Given a tiling $A \oplus T = \mathbb{Z}$, what is the minimal period of that tiling? What is the minimal tiling period among all possible tilings of \mathbb{Z} by A?

• Let $A = \{0, 10, 20\}$. Then $A \oplus \{0, 1, ..., 9\} = \mathbb{Z}_{30}$ and the minimal period of this tiling is 30.

Assume A tiles \mathbb{Z} , and let $D = \max(A) - \min(A)$. Given a tiling $A \oplus T = \mathbb{Z}$, what is the minimal period of that tiling? What is the minimal tiling period among all possible tilings of \mathbb{Z} by A?

- Let $A = \{0, 10, 20\}$. Then $A \oplus \{0, 1, ..., 9\} = \mathbb{Z}_{30}$ and the minimal period of this tiling is 30.
- But A is also a complete set of residues mod 3. Therefore A ⊕ {0} = Z₃, and the minimal tiling period of A (minimized over all possible tilings) is 3.

Assume A tiles \mathbb{Z} , and let $D = \max(A) - \min(A)$.

• Newman: any tiling of \mathbb{Z} by A has period at most 2^D .

・ロト ・回ト ・ヨト ・ヨト

Assume A tiles \mathbb{Z} , and let $D = \max(A) - \min(A)$.

- Newman: any tiling of \mathbb{Z} by A has period at most 2^D .
- Improvements by Kolountzakis, Ruzsa, Biró: $\forall \epsilon > 0 \exists D(\epsilon)$ such that if $D \geq D(\epsilon)$, then any tiling of \mathbb{Z} by A has period at most $\exp(D^{1/3+\epsilon})$.

Assume A tiles \mathbb{Z} , and let $D = \max(A) - \min(A)$.

- Newman: any tiling of \mathbb{Z} by A has period at most 2^D .
- Improvements by Kolountzakis, Ruzsa, Biró: $\forall \epsilon > 0 \exists D(\epsilon)$ such that if $D \geq D(\epsilon)$, then any tiling of \mathbb{Z} by A has period at most $\exp(D^{1/3+\epsilon})$.
- There exist tilings of period at least e^{c log² D/log log D} (Steinberger, improving on earlier work by Kolountzakis). The tiling period M has prime factors that |A| does not have.

Laba-Zakharov 2024: assume A tiles the integers, and let $D = \max(A) - \min(A)$. Then:

- A admits a tiling of period at most $e^{c \log^2 D/\log \log D}$. (Any tiling where M has the same prime factors as |A| satisfies this.)
- For any ε > 0 there exist tilings of period at least D^{3/2-ε}, with |A| and M having the same prime factors.

Laba-Zakharov 2024: assume A tiles the integers, and let $D = \max(A) - \min(A)$. Then:

- A admits a tiling of period at most $e^{c \log^2 D/\log \log D}$. (Any tiling where M has the same prime factors as |A| satisfies this.)
- For any ε > 0 there exist tilings of period at least D^{3/2-ε}, with |A| and M having the same prime factors.

If A satisfies (T2), it admits a tiling with period at most 2D.

T2 results

3-prime result (Łaba-Londner 2021-22)

Theorem. Suppose that $A \oplus B = \mathbb{Z}_M$, with $M = \prod_{i=1}^3 p_i^2$. (This is the simplest case that cannot be reduced to two prime factors using C-M methods.) Then A and B both satisfy (T2).

3-prime result (Laba-Londner 2021-22)

Theorem. Suppose that $A \oplus B = \mathbb{Z}_M$, with $M = \prod_{i=1}^3 p_i^2$. (This is the simplest case that cannot be reduced to two prime factors using C-M methods.) Then A and B both satisfy (T2).

Additionally:

- The proof also provides a classification of all tilings of period $M = \prod_{i=1}^{3} p_i^2$.
- Partial results for more general *M*; to complete the proof, we also need geometric arguments specific to 3 primes, 2 scales. Might go wrong for many distinct prime factors.

Sands: If $A \oplus B = \mathbb{Z}_M$ and M has at most 2 distinct prime factors, then at least one of A, B is contained in a coset of a proper subgroup of \mathbb{Z}_M .

This can be used to set up an inductive argument.

Sands: If $A \oplus B = \mathbb{Z}_M$ and M has at most 2 distinct prime factors, then at least one of A, B is contained in a coset of a proper subgroup of \mathbb{Z}_M .

This can be used to set up an inductive argument.

If M has 3 or more distinct prime factors, Sands's theorem no longer holds. We use a "fiber-shifting" example due to Szabó to demonstrate this.

Let $M = \prod p_i^{n_i}$. A fiber in the p_i direction is a translate of $F_i = \{0, M/p_i, \dots, (p_i - 1)M/p_i\}.$

Example due to Szabó:

Example due to Szabó:

Example due to Szabó:

 $A_{ij} = A_{ij} + A$

Resolving tilings with 3 primes

To prove (T2) for $M = p_1^2 p_2^2 p_3^2$, we reverse this procedure:

- Find places where we think a fiber has been shifted.
- Find those fibers and shift them back.
- This reduces the tiling to one with a simpler structure.
- $(A_{ij})_{ij} = (A_{ij})_{ij} = (A_{ij})_{ij$

A more recent tiling result (Laba-Londner 2024)

We prove (T2) for both sets in $A \oplus B = \mathbb{Z}_M$, assuming that one of the prime factors of M is large compared to others. For example, (T2) holds for A and B if:

- $M = p_1^{n_1} p_2^{n_2} p_3^{n_3}$ for any $n_1, n_2, n_3 \in \mathbb{N}$, if $p_1 > p_2^{n_2 1} p_3^{n_3 1}$. (This includes $M = p_1^{n_1} p_2^2 p_3^2$ if $p_1 > p_2 p_3$.)
- $M = p_1^n p_2^2 p_3^2 p_4^2$ for any $n \in \mathbb{N}$, if $p_1 > p_2 p_3 p_4$.

Large prime result: sketch of proof

- Divisor sets and divisor exclusion
- Splitting for fibers
- Large prime implies splitting uniformity
- Splitting uniformity implies tiling reduction

Large prime result: divisor sets

Define $\text{Div}(A) = \{(a - a', M) : a, a' \in A\}$, and similarly for B.

Divisor exclusion (Sands)

Let $A, B \subset \mathbb{Z}_M$. Then $A \oplus B = \mathbb{Z}_M$ if and only if |A| |B| = Mand

 $\operatorname{Div}(A) \cap \operatorname{Div}(B) = \{M\}.$

Large prime result: splitting for fibers

Given a fiber $z + F_i$, consider the elements of A and B that tile that fiber:

$$a_{\nu} + b_{\nu} = z + \nu M/p_i, \quad \nu = 0, 1, \dots, p_i - 1.$$

Divisor exclusion implies that one of the following happens:

(a)
$$\forall \nu \neq \mu, p_i^{n_i} \mid a_{\nu} - a_{\mu} \text{ and } p_i^{n_i - 1} \parallel b_{\nu} - b_{\mu},$$

(b) $\forall \nu \neq \mu, p_i^{n_i} \mid b_{\nu} - b_{\mu} \text{ and } p_i^{n_i - 1} \parallel a_{\nu} - a_{\mu},$

Splitting parity is (A, B) in (a), (B, A) in (b).

Large prime result: splitting for fibers

-▶ ▲臣▶ 臣 - 釣∝⊙

Large prime implies splitting uniformity

If one of the primes is large, (B, A) splitting implies $M/p_i \in \text{Div}(A)$.

Large prime implies splitting uniformity

If one of the primes is large, (B, A) splitting implies $M/p_i \in \text{Div}(A)$.

By divisor exclusion, cannot have that for both A and B. Therefore all fibers in the p_i direction split with the same parity.

Large prime result: splitting uniformity implies tiling reduction

If the splitting parity is uniform, we can apply the *slab* reduction:

- The tiling can be decomposed into p_i separate tilings of \mathbb{Z}_{M/p_i} .
- (T2) holds for the original tiling if and only if it holds for the smaller tilings.
- Proceed by induction until (T2) is known.

More general cases with many primes?

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● のへで

More primes?

General fact: high-dimensional tilings are complicated. For example:

Keller's conjecture for cube tilings

In any tiling of \mathbb{R}^d by translates of the unit cube, there must be two cubes that share a full (d-1)-dimensional face.

- True for $d \leq 7$ (Perron; Brakensiek-Heule-Mackey-Narváez).
- False for $d \ge 8$ (Lagarias-Shor, Mackey).

Keller-type properties for integer tilings

Open question: Suppose that $A \oplus B = \mathbb{Z}_M$. Is it always true that $M/p \in \text{Div}(A) \cup \text{Div}(B)$ for some p|M prime?

イロト イヨト イヨト イヨト

• Used in the large prime result.

Keller-type properties for integer tilings

Open question: Suppose that $A \oplus B = \mathbb{Z}_M$. Is it always true that $M/p \in \text{Div}(A) \cup \text{Div}(B)$ for some p|M prime?

- Used in the large prime result.
- When $M = p_1^2 p_2^2 p_3^2$, we have the stronger result that one of A, B contains a fiber (used in our T2 proof).

Keller-type properties for integer tilings

Open question: Suppose that $A \oplus B = \mathbb{Z}_M$. Is it always true that $M/p \in \text{Div}(A) \cup \text{Div}(B)$ for some p|M prime?

- Used in the large prime result.
- When $M = p_1^2 p_2^2 p_3^2$, we have the stronger result that one of A, B contains a fiber (used in our T2 proof).
- Bruce-Laba 2024: we use counterexamples to Keller's conjecture to construct integer tilings with no fibers in either set. For T2 with more primes, new methods will be needed.

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

Coven-Meyerowitz theorem

Let $S_A = \{p^{\alpha}: \Phi_{p^{\alpha}}(X) | A(X)\}$. Consider the conditions:

(T1) $A(1) = \prod_{s \in S_A} \Phi_s(1)$, (T2) if $s_1, \ldots, s_k \in S_A$ are powers of distinct primes, then $\Phi_{s_1\ldots s_k}(X)$ divides A(X).

Then:

- if A satisfies (T1), (T2), then A tiles \mathbb{Z} ;
- if A tiles Z and |A| has at most two prime factors, then (T2) holds.

Fuglede's spectral set conjecture

Conjecture: Assume that $\Omega \subset \mathbb{R}^n$ has non-zero and finite Lebesgue measure. Then Ω tiles \mathbb{R}^n by translations if and only if $L^2(\Omega)$ admits an orthogonal basis of exponential functions (Ω is spectral)

Fuglede's spectral set conjecture

The conjecture, in its full generality, is false in dimensions $n \ge 3$ (Tao, Kolountzakis, Matolcsi, Farkas, Révész, Móra)

・ 「 ト ・ ヨ ト ・

Fuglede's spectral set conjecture

The conjecture, in its full generality, is false in dimensions $n \ge 3$ (Tao, Kolountzakis, Matolcsi, Farkas, Révész, Móra)

But true in many special cases of interest:

- When the translation set is a lattice (Fuglede)
- Convex sets in \mathbb{R}^n (Iosevich-Katz-Tao for n = 2; Greenfeld-Lev for n = 3, Lev-Matolcsi for $n \ge 4$).
- Finite group analogue, for groups with simple enough structure (Malikiosis, Kolountzakis, Iosevich, Mayeli, Pakianathan, Kiss, Somlai, Viser, Shi, Zhang...)

Connection to Coven-Meyerowitz tiling conditions

If (T2) holds for all tiles of \mathbb{Z}_M for some M, then tiling implies spectrality in \mathbb{Z}_M . (Laba)

Connection to Coven-Meyerowitz tiling conditions

If (T2) holds for all tiles of \mathbb{Z}_M for some M, then tiling implies spectrality in \mathbb{Z}_M . (Laba)

If C-M conjecture is true, then every bounded tile Ω of \mathbb{R} is spectral. Follows by combining the above with earlier work by Lagarias-Wang.

Dutkay-Lai: If every spectral set $A \subset \mathbb{Z}$ satisfies (T1) and (T2), then every bounded spectral set in \mathbb{R} tiles \mathbb{R} by translations.

(T1) and (T2) imply spectrality

Let
$$A \subset \mathbb{Z}_M$$
. Let

$$\Lambda = \left\{ \sum_s \frac{k_s}{s} : k_s \in \{0, 1, \dots, p-1\} \right\}$$

where s runs over all prime powers s|M such that $\Phi_s|A$. Try

$$\{e^{2\pi i\lambda}:\ \lambda\in\Lambda+\mathbb{Z}\}$$

as an orthonormal basis for $L^2(A)$.

- If A satisfies T1, Λ has the "right" cardinality $|\Lambda| = |A|$.
- If A satisfies T2, then the given exponentials are pairwise orthogonal in $L^2(A)$.

New ideas needed for 3 prime factors:

- Suppose $\Phi_M|A$. Use this to establish initial structure, at first only on individual top-level grids.
- For "fibered grids", try to proceed by induction on scales.
- For "unfibered grids" (as in Szabó's example), use the irregularities to recover the rest of the tiling.
- To do all this, we had to develop new tools (box product, multiscale cuboids, saturating sets...). These tools can be applied to a range of other questions.