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Large configurations with no small triangles

Construction (Erdés, ‘50s)
1

NOEE

Main idea: triangles determined by points in Z? must have area > 1/2.
@ For a prime n < p < 2n, define

X—{(X,y): x,y €{0,...,p—1}, y=x* mod P}-
P p

e This is a set of size p inside [0, 1]? with no three collinear points.
@ Any triangle with vertices in X must have area at least 1/2p? > 1/8n°.
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Heilbronn's original conjecture

Conjecture (Heilbronn, ‘50s)

s -o(2)

@ In other words, there exist positive absolute constants ¢ and C such that

c C

Theorem (Komlds, Pintz, Szemerédi, '82)

An) > log n

~ n2

@ Same log as in R(n,3) = @( n” )

log n
@ ‘Same’ log as in the d/29 lower bound for the sphere packing density in RY.
o Campos-Jenssen-Michelen-Sahasrabudhe (‘24): dlog d/2°.
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Upper bounds

An) 5

S|
D——

e Among any n points in [0, 1]?, there exists a triangle of area < —L.

Not easy to improve upon this easy estimate!

Can one find a triangle of area o(1/n)?

Question J
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Very important geometric fact!

Area = % - base - height J

e Given two points x and y, the set of points z in R? such that Area(xyz) < A
is a strip of width 4A/||x — y|| around the line xy.

\
—

o If A denotes the smallest triangle area determined by P C [0, 1], then

4A
Ty, (HX—}/H) NP ={x,y} holds for every x £y € P.



Upper bounds
Theorem (Roth, '51)

A(n) = o(1/n).

@ Density increment argument gives the following quantitative bound:

Aln) S ————.
(n) 3 n(log log n)1/2

@ Precursor of Roth's theorem that every set in {1,..., n} without nontrivial
3APs must always have size o(n).
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Upper bounds
Theorem (Roth, '51)

A(n) = o(1/n).

@ Density increment argument gives the following quantitative bound:

Aln) S ————.
(n) 3 n(log log n)1/2

@ Precursor of Roth's theorem that every set in {1,..., n} without nontrivial
3APs must always have size o(n).

Theorem (Schmidt, ‘72)

Schmidt shows: ~1/2
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Polynomial improvements

Theorem (Roth, '72)

There exists an absolute constant 1 > 0 such that

A(n) S ntH

Roth obtained the explicit value p =1 — \/g ~ 0.10557.

Roth ('73): 1 = §(9 — v/65) ~ 0.11721.
Komlés, Pintz, Szemeredi ('83):
A(n) S 87,

Cohen, P., Zakharov (‘23+):
An) < ,—8/7—1/2000

Theorem (Cohen-P.-Zakharov, ‘24+)

A(n) S n7/8,




Incidence geometry

Given a set P of points and a set L of geometric objects in RY, an incidence is a
pair (p,£) € P x L, where p€ P, £ € L, and p lies on /.

@ We denote by /(P, L) the number of incidences in P x L.
o Szemerédi-Trotter theorem (‘83): if P C R? and L is a set of lines in R?,

I(P,L) < |PIEILIS + |P| + |L].

@ Several standard examples showing that this bound is optimal.
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@ We denote by /(P, L) the number of incidences in P x L.
o Szemerédi-Trotter theorem (‘83): if P C R? and L is a set of lines in R?,

I(P,L) < |PIEILIS + |P| + |L].

@ Several standard examples showing that this bound is optimal.

Proving sharp upper bounds for /(P, L) in other settings turns out to lead to
remarkably challenging and interesting problems.. (for their own sake and also for
most applications)

The Heilbronn triangle problem is about incidence lower bounds! J




Incidence geometry setup

e P C[0,1]?, L = {lines ¢ connecting pairs x # y € P with ||x — y|| < u}.
@ For every scale w > 0, let
I(w; P, L) = #{(p,f) e Px L : peTy(w)}
where Ty(w) is the tube of width w generated by £.




Incidence geometry setup

e P C[0,1]?, L = {lines ¢ connecting pairs x # y € P with ||x — y|| < u}.
@ For every scale w > 0, let
I(w; P,L) =#{(p,0) e Px L : peTyw)}
where Ty(w) is the tube of width w generated by £.

If /(w; P, L) > 2|L| holds for some (tiny) scale w, then A < uw. )




Rough story:

Pick wr < w;:

(A) Initial estimate.

I(w;; P, L) > w;|P||L|.

(B) Inductive step.

I(ws; P, L) B I(w;; P, L) <ol \
wiPIE ~ wilPIL] | <" o
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2. New approach to initial estimate story using direction set estimates from
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Pick wr < w;:
(A) Initial estimate. ASA—
I(wi; P, L) > wi| P||L]. P
o \ \" (———ﬁu
(B) Inductive step. |
I(we; P, L) I(wi; P, L) <1 Pl
wlPlIL  wiPL | < o

Our contributions:

1. Modern perspective on Roth’s inductive step in terms of the so-called
high-low method, introduced by Guth-Solomon-Wang in 2019.

2. New approach to initial estimate story using direction set estimates from
projection theory.

3. New incidence geometry setup (and new combination of steps like 1 and 2).



Inductive step and the high-low method

Incidence setup:
e P C[0,1]? L a set of lines.
o I(w; P, L)y=#{(p,l) e Px L : pecTyw)}.

@ Two scales wr < w;:

— W,
Pl

I(W,';P,L) I(Wf;P,L)‘< Mp(Wf) ML(W,') -3
wi| P||L] we|PIIL |

Notation:
o Mp(w)=max{|QN P|, Q awx w square},
o Mi(w)=max{|TNL|, Tawx1tube}.



Inductive step and the high-low method

Incidence setup:
e P C[0,1]? L a set of lines.
o [(w;P,L)=#{(p,f) e Px L : peTyw)}.
@ Two scales wr < w;:

- W,
Pl

I(W,';P,L) I(Wf;P,L)‘< Mp(Wf) ML(W,') -3
wi| P||L]| we|PIIL |

Notation:
o Mp(w)=max{|QN P|, Q awx w square},
o Mi(w)=max{|TNL|, Tawx1tube}.

Motto

If P and L are not concentrated, then I'E/"lv,;ﬂ’b) doesn’t change much as w varies. J
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Theorem (Vinh, ‘11)

Let g be a prime power, let P C IE‘?7 be a set of points, and let L C ]Ff7 be a set of
lines. Then,

P||L
ey - B < ez

@ Motivation: analogue of Szemerédi-Trotter over F2 when |P| and |L] are
large.

@ Also comes with a lower bound for /(P, L) when P and L are large, e.g. if
|P||L| > g> then there must always exist an incidence between P and L.

@ Original proof uses the expander mixing lemma.
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Theorem (Vinh, ‘11)

Let g be a prime power, let P C Ff, be a set of points, and let L C ]Ff, be a set of
lines. Then,
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xEP xe]Fg

xeP

Show

. 2
One can compute explicitly 3, . P(x)? = PORE (Y rer Leer) -



Main point

Cauchy-Schwarz proof:

ey~ 124

> (w00 - 1) [ <1p (Z (¢<x)—'—f,')2>1/2.

Foreach € L, let &, =1, — %. Then, for ¢ )¢’ € L:

> Op(x)dp(x)=1-1-1+1=0.

x€F2

The functions ®, and ¢, are orthogonal if £ and ¢’ are not parallel.




Main point

Cauchy-Schwarz proof:

ey~ 124

> (w00 - 1) [ <1p (Z (¢<x)—'—f,')2>1/2.

Foreach € L, let &, =1, — %. Then, for ¢ )¢’ € L:

> Op(x)dp(x)=1-1-1+1=0.
x€F2
The functions ®, and ¢, are orthogonal if £ and ¢’ are not parallel. )

o (x) — lL‘ =2 e Pe(x).
(PvL)_%‘:’ pePépaZéeLq)f)‘-

2
0 Trers (¥0x) = )" = [Seer @ell; = Leer 19613 = ILla.
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e P C[0,1]% L a set of lines.
o I(w;P,L)=#{(p,£) e Px L : peTyw)}.

@ Two scales wr < w;:
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Rough idea: consider

1
g= Z Wf 1B(p we) and ¢ = Z <1TW(( ) — 1Twr(4)>

pEP LeL Wi

(g, ®)| <

Then,
\ lel2l ]z

I(w;; P, L) I(Wf';P,L)‘ 1
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Inductive step and the high-low method

e P C[0,1]% L a set of lines.
o I(w;P,L)=#{(p,£) e Px L : peTyw)}.

@ Two scales wr < w;:

‘I(W,'; P,L)  I(wr; P, L)‘ < [ Mp(wr) Mi(wi) o3
wi| PI[L]| welPIILL |~ 1P L

Rough idea: consider

1
g= Z Wf 1B(p we) and ¢ = Z <1TW(( ) — 1Twr(4)>

I

peP leL
— ~ s <S 2.
w;|PI|L] we |PJIL| |PIIL| IPHLI

@ Estimate ||®||, using orthogonality of {%1%-(6) - Wflwa(f)}z K
i~ Tw, c
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Initial estimate story

Naive opening moves: /O,
e Partition [0,1]? into a grid of
u X U squares. =

@ For each of these squares Q, S/ \ LQ;
consider the set of points y \

PN Q, and defi W
an erine Q\E/‘(\ \
PNQ
LQ:{ET:T€< 5 )}

@ Using a double counting argument, can ensure that for most of the squares Q
in the partition there are not many directions with the w; x 1 tube in
direction 6 containing Q having < w;|P| points of P.




Main challenge

Address the possibility that the set of directions spanned by the lines in Lo may
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Main challenge

Address the possibility that the set of directions spanned by the lines in Lo may
be concentrated in the small number of bad directions. J

Crucial observation
If PN Q is ‘s-dimensional’ for s > 1, then this can’t really happen. J

@ Here P is s-dimensional if |P N | < w*|P| for every w x w square [J.
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Theorem (Marstrand ‘54)
Let X C R? be a Borel set such that dimy(X) > 1. Then dimy S(X) = 1. J
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Projection theory to the rescue

Setup: S(X) C S! denotes the set of directions spanned by a set X C R?.

Theorem (Marstrand ‘54)
Let X C R? be a Borel set such that dimy(X) > 1. Then dimy S(X) = 1.

Can use discretized version of this to show the line set Lg is spread out, if PN Q
is > 1-dimensional.

@ Structural result: Partition P into (1 + £)—dimensional subsets PN Q.
@ Get many well-spaced lines in each Lo and some w; such that

#{p € Ty, (£)} Z w;|P| for most lines in Lg.

@ Use inductive step to get wy < w; for which l‘fv':’(,;,’i’fl) > 1.

“Twist’

Story so far only recovers A(n) S n=8/7.
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If PN Q is s-dimensional for s < 1, then Lo may not be spread out. But if PN Q@
is not concentrated in a narrow tube, then that can't happen either.




How to find even smaller triangles?

Crucial observation # 2

If PN Q is s-dimensional for s < 1, then Lo may not be spread out. But if PN Q@
is not concentrated in a narrow tube, then that can't happen either.

Theorem (Orponen, Shmerkin, and Wang, ‘22)

Let X C R? be a nonempty Borel set not contained in any line. Then

dimy S(X) > min {1,dimy X}.

@ Continuous analogue of Szény's theorem that every set A C IFI% of size

1 < |A| < p determines at least ‘A|2+3 distinct directions, provided that A is
not contained in any affine line.

@ Proof relies on Bourgain's discretized sum-product theorem.

Discretize = Incorporate (1 — €)-regular sets = Better initial estimate. J
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Question

For 6 > 0, what is the maximum size of n = n(d) for which there exists a set of
points P = {p1,...,p,} C [0,1]? and a set of lines L = {/1,...,¢,} such that

pi € Ty (0) if and only if i = ;7

Here Ty(d) denotes the tube of width § centered around line £.



New incidence geometry setup

Question

For § > 0, what is the maximum size of n = n(d) for which there exists a set of
points P = {p1,...,p,} C [0,1]? and a set of lines L = {/1,...,¢,} such that

pi € Ty (0) if and only if i = ;7

Here Ty(d) denotes the tube of width § centered around line £.
Easy bound

n<1/6°

o For every set P C [0,1]?, there exists i # j such that |p; — p;| < 1/n'/2.

o If n>1/62, then |p; — pj| < 1/n*/2 < § holds, and so the point p; lies in the
tube Tei((S).

Can one do better?
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Question

Let g be a prime power, let P = {p1,...,p,} CF2, andlet L = {¢1,...,¢,} be a
set of lines in F2 with
pi € ¢; if and only if i = j.

What is the maximum value of n?

The lower bound in Vinh's inequality gives
1 n?
n=1(P.L)> [PIIL|~ q"?|PIA|L? = 2~ gV,

Hence n < ¢3/2 + q.



Finite fields analogue

Question

Let g be a prime power, let P = {p1,...,p,} CF2, andlet L = {¢1,...,¢,} be a
set of lines in F2 with
pi € ¢; if and only if i = j.

What is the maximum value of n?

The lower bound in Vinh's inequality gives
1 n?
n=1(P.L)> |PIIL|~ q"*|PI|L]Y? = 7~ g%,

Hence n < ¢3/2 + q.

Theorem (Cohen-P.-Zakharov, ‘24+)

Let § >0, P={p1,...,pn} C [0,1]? and a set of lines L = {¢y,...,£,} such that
pi € Ty, (8) if and only if i = j. Then, n < 673/
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Application to the Heilbronn triangle problem

Theorem (Cohen-P.-Zakharov, ‘24+)

Let § >0, P={p1,...,pn} C [0,1]? and a set of lines L = {¢y,...,£,} such that
pi € Ty, (8) if and only if i = j. Then, n < 673/

Equivalently, let {p; € ¢;}7_, be a configuration of points in [0,1]? and a line
through each point. Then, there is some i # j for which d(p;, ¢;) S n~2/3.

Let P C [0,1]?. To find a triangle of area 5 n~7/® determined by P: J

e Pick m = n disjoint pairs (p1,q1), .- -, (Pm; gm) € P X P such that
lpi — qil < 1/n'/? for each i.

@ Let /; denote the line passing through p; and g; and consider the set
P ={p1,...,Pm} and the lines L = {¢1,... ¢}

o There is some i # j for which d(p;, ¢;) S n=%/3.

e Triangle pipjq; has area g n=2/3p=12 = n=17/6,
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set of lines in F2 with p; € ¢; iff i = j. Then, n < g2+ q.
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An open problem

Recall

Let g be a prime power, let P = {py,...,p,} CFz, and let L = {/y,...,£,} be a
set of lines in F2 with p; € ¢; iff i = j. Then, n < g2+ q.

@ When g = p?, this estimate is optimal up to constants.
o Let P={(a,b) € F2 : a"™ 4 pP™ =1}, |P| = p’.
o For each point x = (a, b) € P, there exists a unique ‘tangent’ F.-line
L C Fiz such that £, N P = {x}.
o This tangent line £, is given by £, = {(a+ tb”, b — ta®), t € F2}. Let
L={l: xe€ P}.
e The Hermitian unital P was also recently used by Mattheus-Verstraete to show

If g is a prime number, then n < ¢g3/2=< holds for some absolute constant ¢ > 0.

Problem J




Thank you



